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Implicit Definability in Arithmetic

Stephen G. Simpson

Abstract We consider implicit definability over the natural number system
N; C; �; D. We present a new proof of two theorems of Leo Harrington. The
first theorem says that there exist implicitly definable subsets of N which are not
explicitly definable from each other. The second theorem says that there exists a
subset of N which is not implicitly definable but belongs to a countable, explic-
itly definable set of subsets of N. Previous proofs of these theorems have used
finite- or infinite-injury priority constructions. Our new proof is easier in that it
uses only a nonpriority oracle construction, adapted from the standard proof of
the Friedberg jump theorem.

1 Introduction

Definitions Let N D ¹0; 1; 2; : : : ; n; : : :º D the set of all natural numbers. Let
Pow.N/ be the powerset of N, that is, the set of all subsets of N. A set X 2 Pow.N/

is said to be arithmetical if it is explicitly definable over the natural number system
N; C; �; D. In other words,

X D
®
n 2 N

ˇ̌
.N; C; �; D/ ˆ ˆ.n/

¯
for some first-order formula ˆ.n/ in the language C; �; D. Given two sets
X; Y 2 Pow.N/, we say that X is arithmetical in Y if X is explicitly definable
from Y ; that is,

X D
®
n 2 N

ˇ̌
.N; C; �; Y; D/ ˆ ˆ.n/

¯
for some first-order formula ˆ.n/ in the language C; �; Y; D. We say that X and Y

are arithmetically incomparable if neither is arithmetical in the other. A set of sets
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S � Pow.N/ is said to be arithmetical if it is explicitly definable; that is,

S D
®
X 2 Pow.N/

ˇ̌
.N; C; �; X; D/ ˆ ˆ

¯
for some first-order sentence ˆ in the language C; �; X; D. A set X 2 Pow.N/ is
called an arithmetical singleton or implicitly arithmetical if the singleton set ¹Xº is
arithmetical.

Remark 1 The purpose of this paper is to present a new proof of two theorems of
Harrington [6], [7] concerning implicit definability over the natural number system
N; C; �; D. The two theorems read as follows.

1. There exist arithmetical singletons X; Y 2 Pow.N/ which are arithmetically
incomparable (see Theorem 4.4 below).

2. There exists a set Z 2 Pow.N/ which belongs to a countable arithmetical set
of sets S � Pow.N/ but is not an arithmetical singleton (see Theorem 4.5
below).

We feel that these two theorems deserve to be better known, because they embody
significant insight concerning implicit definability in arithmetic.

Remark 2 Before Harrington’s work, some early theorems concerning implicit
definability in arithmetic were as follows.

1. There exists X 2 Pow.N/ which is implicitly arithmetical but not arithmeti-
cal. (Namely, let X D 0.!/ D the Tarski truth set for N; C; �; D; see Rogers
[11, Theorems 14-X and 15-XII]).

2. There exist X; Y 2 Pow.N/ such that the pair X ˚Y is implicitly arithmetical
but neither X nor Y is implicitly arithmetical. (Namely, let X and Y be Cohen
generic over N; C; �; D such that X ˚ Y and 0.!/ are arithmetical in each
other; see Feferman [3] or Rogers [11, Exercise 16-72]).

3. Each arithmetical singleton is arithmetical in 0.˛/ for some recursive ordinal
˛, and each such 0.˛/ is itself an arithmetical singleton (see, e.g., Sacks [13,
Chapter II]).

4. Every nonempty countable arithmetical set of sets S � Pow.N/ contains an
arithmetical singleton. (This result is due to Tanaka [15].)

Remark 3 Harrington’s original proof (see [6]) of Theorem 4.4 was based on an
infinite-injury priority construction. The same method has been used by Harrington
[6] and others to obtain results about !-REA arithmetical degrees (see M. F. Simp-
son [14, Chapters 2 and 3] and Odifreddi [10, Chapter XIII]), jump embeddings (see
Hinman and Slaman [8]), nonstandard models of arithmetic (see Ash and Knight [1,
Chapters 14–19, Theorem 19.19]), and generalized high/low hierarchies (see Mon-
talbán [9]).

Remark 4 Harrington’s original proof (see [7]) of Theorem 4.5 was based on
a finite-injury priority construction. The same method has been extended into the
transfinite by Harrington [7] and Gerdes [5] to obtain other interesting results. In
particular, see Remark 12 below. For an application to effectively Borel equivalence
relations, see Fokina, Friedman, and Törnquist [4].

Remark 5 Our new proof of Theorems 4.4 and 4.5 does not use a priority con-
struction of any kind. Instead, our proof is based on a direct oracle construction,
adapted from the standard proof of the Friedberg jump theorem. In this sense, our
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proof of Theorems 4.4 and 4.5 is much easier than the proofs in [1], [5]–[10], and
[14]. On the other hand, our proof uses the recursion theorem in exactly the same way
as Harrington used it. Harrington [6] has referred to this way of using the recursion
theorem as “the shiny little box which was first opened by Sacks [12].”

Remark 6 Beyond Theorems 4.4 and 4.5, we believe we can extend our nonprior-
ity oracle method farther into the transfinite to obtain relatively easy proofs of at least
some of the other results of Harrington [7] and Gerdes [5]. However, we reserve that
extension for a future paper. In this paper we limit ourselves to providing relatively
easy proofs of Theorems 4.4 and 4.5.

Remark 7 The plan of this paper is as follows. In Section 2 we review some
basic recursion-theoretic notions. In Section 3 we prove a rudimentary version of
Theorems 4.4 and 4.5. In Section 4 we prove Theorems 4.4 and 4.5.

2 Recursion-Theoretic Background

In this section we review some basic notions from recursion theory which are needed
for our proof of Theorems 4.4 and 4.5. A good reference for this material is Rogers
[11].

Natural numbers are denoted e; i; j; k; l; m; n; : : : . The set of all natural numbers
is denoted N. Instead of working with Pow.N/, the set of all subsets X � N, we
work with NN, the set of all functions X W N ! N. The space NN with the product
topology is known as the Baire space. Points in NN are denoted X; Y; Z; : : : . Subsets
of NN are denoted P; Q; : : : .

Recall that a point X 2 NN or a set P � NN is arithmetical if and only if it
is …0

n for some n � 1. The hierarchy …0
n, where n D 1; 2; : : : , is known as the

arithmetical hierarchy (see, e.g., [11, Chapters 14–16]). (It is known (see [15]) that
every arithmetical set is in arithmetical one-to-one correspondence with a …0

1 set.
However, we will not need this result here.) A …0

n singleton is a point X such that
the singleton set ¹Xº is …0

n. Thus X is an arithmetical singleton if and only if it is
a …0

n singleton for some n � 1. A ranked point is a point X such that X 2 P for
some countable …0

1 set P .
Points in NN may be viewed as Turing oracles (see, e.g., [11, Chapters 9–13]).

Relativizing to a Turing oracle A 2 NN, a point X 2 NN or a set P � NN is said
to be …

0;A
n if it is …0

n relative to A, and arithmetical in A if it is …
0;A
n for some n.

In particular, a set P is topologically closed if and only if it is …
0;A
1 for some A. A

point X such that the singleton set ¹Xº is …
0;A
n is called a …

0;A
n singleton.

For A 2 NN we write ¹eºA.i/ D j to mean that the eth Turing machine with
oracle A and input i halts with output j . We write ¹eºA.i/ # (resp., ") to mean that
the eth Turing machine with oracle A and input i halts (resp., does not halt). Thus
¹eºA.i/ # if and only if 9j .¹eºA.i/ D j /. For A; B 2 NN we write A �T B to mean
that A is Turing reducible to B , that is, 9e 8i .A.i/ D ¹eºB.i//. We write A �T B

to mean that A is Turing equivalent to B , that is, A �T B and B �T A. We define
A ˚ B 2 NN by the equations .A ˚ B/.2i/ D A.i/ and .A ˚ B/.2i C 1/ D B.i/.
Thus A ˚ B �T C if and only if A �T C and B �T C .

For A 2 NN we write A0 D the Turing jump of A, defined by

A0.e/ D

´
1 if ¹eºA.e/ #;

0 if ¹eºA.e/ " :
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We write A.n/ D the nth Turing jump of A, defined inductively by letting A.0/ D A

and A.nC1/ D .A.n//0 for all n. Recall that A is arithmetical in B if and only if
9n .A �T B.n//. For use in the proof of Theorems 3.5 and 4.5, note that for each
n � 1, a set P � NN is …0

n if and only if 9e 8X .X 2 P , X .n/.e/ D 0/ (see, e.g.,
[11, Section 14.5]).

We write A.!/ D the !th Turing jump of A, defined by

A.!/.i/ D

´
A.n/.e/ if i D 3n5e;

0 otherwise .

Thus A.!/ D
L

n A.n/ and A.n/ �T A.!/ uniformly in n.
Let 0 2 NN denote the constant zero function. Thus 0.n/ D the nth Turing jump

of 0, and 0.!/ D the !th Turing jump of 0. Note also that X is arithmetical if and
only if X �T 0.n/ for some n.

3 A Rudimentary Version of Harrington’s Theorems

The purpose of this section is to prove a rudimentary version of Harrington’s theo-
rems, with “arithmetical” replaced by …0

n for a fixed n. Our rudimentary versions of
Theorems 4.4 and 4.5 are Theorems 3.4 and 3.5, respectively.

Lemma 3.1 Given a …
0;A0

1 set P , we can find a …
0;A
1 set Q and a homeomor-

phism F W P Š Q such that X ˚ A �T F.X/ ˚ A uniformly for all X 2 P .

Proof Since P is a …
0;A0

1 set, it follows that P is a …
0;A
2 set, say, P D ¹X j 8i 9j

R.X; i; j /º, where R is an A-recursive predicate. Define F W P Š Q D F.P /

by letting F.X/ D X ˚ bX , where bX.i/ D the least j such that R.X; i; j / holds.
Clearly Q is a …

0;A
1 set and X ˚ A �T F.X/ ˚ A uniformly for all X 2 P .

Lemma 3.2 Given a …
0;A0

1 set P , we can find a …
0;A
1 set Q and a homeomor-

phism H W P Š Q such that X ˚ A0 �T H.X/ ˚ A0 �T .H.X/ ˚ A/0 uniformly
for all X 2 P .

In order to prove Lemma 3.2, we first present some general remarks concerning
strings, trees, and treemaps.

Notation (strings) Let N� D
S

l2N Nl D the set of strings, that is, finite
sequences of natural numbers. For � D hn0; n1; : : : ; nl�1i 2 N� we write
�.i/ D ni for all i < j� j D l D the length of � . For �; � 2 N� we
write �a� D the concatenation, � followed by � , defined by the conditions
j�a� j D j� j C j� j, .�a�/.i/ D �.i/ for all i < j� j, and .�a�/.j� j C i/ D �.i/

for all i < j� j. We write � � � if �a� D � for some �. If j� j � n, we write
��n D h�.0/; �.1/; : : : ; �.n � 1/i D the unique � � � such that j�j D n. For
X 2 NN we write X�n D hX.0/; X.1/; : : : ; X.n � 1/i D the unique � � X such
that j� j D n. If j� j D j� j D n, we define � ˚� 2 N� by the conditions j� ˚� j D 2n

and .� ˚ �/.2i/ D �.i/ and .� ˚ �/.2i C 1/ D �.i/ for all i < n.

Definition (trees) A tree is a set T � N� such that
8� 8�

�
.� � � and � 2 T / ) � 2 T

�
:

For any tree T we write
ŒT � D ¹paths through T º D

®
X

ˇ̌
8n .X�n 2 T /

¯
:
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Remark 8 It is well known (see, e.g., [11, Chapter 15]) that the following state-
ments are pairwise equivalent.

1. P is a …
0;A
1 set.

2. P D ŒT � for some …
0;A
1 tree T .

3. P D ŒT � for some A-recursive tree T .
4. P D ¹X j X ˚ A 2 ŒT �º for some recursive tree T .

Definition (treemaps) Let T be a tree. A treemap is a function F W T ! N� such
that

F
�
�a

hii
�

� F.�/a
hii

for all � 2 T and all i 2 N such that �ahii 2 T . We then have another tree

F.T / D
®
�

ˇ̌
9�

�
� 2 T and � � F.�/

�¯
:

Thus P D ŒT � and F.P / D ŒF .T /� are closed sets in the Baire space, and we have a
homeomorphism F W P Š F.P / defined by F.X/ D

S
n2N F.X�n/ for all X 2 P .

Note also that the composition of two treemaps is a treemap. A treemap F W T ! N�

is said to be A-recursive if it is the restriction to T of a partial A-recursive function.

Remark 9 Let T be a tree, and let F W T ! N� be a treemap. Given � 2 F.T /,
let � 2 T be minimal such that � � F.�/. Then � is a substring of � , that is,
� D h�.j0/; �.j1/; : : : ; �.jl�1/i for some j0 < j1 < � � � < jl�1 < j� j. Thus, in the
definition of F.T /, the quantifier 9� may be replaced by a bounded quantifier,

F.T / D
®
�

ˇ̌
.9� substring of �/

�
� 2 T and � � F.�/

�¯
:

This implies that, for instance, if F and T are A-recursive, then so is F.T /.

We are now ready to prove Lemma 3.2.

Proof of Lemma 3.2 Given A, we construct a particular A0-recursive treemap
G W N� ! N�. We define G.�/ by induction on j� j beginning with G.hi/ D hi.
If G.�/ has been defined, let e D j� j, and for each i let G.�ahii/ D the least
� � G.�/ahii such that ¹eº

�˚A
j� j

.e/ # if such a � exists, otherwise G.�ahii/ D

G.�/ahii. Clearly G is an A0-recursive treemap, and our construction of G implies
that for all e and X , ¹eºG.X/˚A.e/ # if and only if ¹eº

G.X�eC1/˚A

jG.X�eC1/j
.e/ #. Thus

X ˚ A0 �T G.X/ ˚ A0 �T .G.X/ ˚ A/0 uniformly for all X .
Let G be the A0-recursive treemap which was constructed above. Let P be a …

0;A0

1

set. By Remarks 8 and 9 we know that the restriction of G to P maps P homeomor-
phically onto another …

0;A0

1 set G.P /. Applying Lemma 3.1 to G.P / we obtain a
…

0;A
1 set Q and a homeomorphism F W G.P / Š Q such that Y ˚ A �T F.Y / ˚ A

uniformly for all Y 2 G.P /. Thus H D F ı G is a homeomorphism of P onto Q,
and for all X 2 P we have G.X/ ˚ A �T F.G.X// ˚ A D H.X/ ˚ A uniformly,
and hence X ˚ A0 �T H.X/ ˚ A0 �T .H.X/ ˚ A/0 uniformly.

Remark 10 Our proof of Lemma 3.2 via treemaps is similar to the proof of
[2, Lemma 5.1]. Within our proof of Lemma 3.2, the construction of the specific
treemap G is the same as the standard proof of the Friedberg jump theorem as ex-
pounded, for instance, in [11, Section 13.3].



334 Stephen G. Simpson

Lemma 3.3 Given a …
0;0.n/

1 set Pn, we can find a …0
1 set P0 and a homeomor-

phism H n
0 W Pn Š P0 such that Xn ˚ 0.n/ �T X0 ˚ 0.n/ �T X

.n/
0 uniformly for all

Xn 2 Pn and X0 D H n
0 .Xn/ 2 P0.

Proof The proof is by induction on n. For n D 0 there is nothing to prove. For
the inductive step, given a …

0;0.nC1/

1 set PnC1, apply Lemma 3.2 with A D 0.n/

to obtain a …
0;0.n/

1 set Pn and a homeomorphism Hn W PnC1 Š Pn such that
XnC1 ˚ 0.nC1/ �T Hn.XnC1/ ˚ 0.nC1/ �T .Hn.XnC1/ ˚ 0.n//0 uniformly for
all XnC1 2 PnC1. Then apply the inductive hypothesis to Pn to find a …0

1 set P0

and a homeomorphism H n
0 W Pn Š P0 such that Xn ˚ 0.n/ �T X0 ˚ 0.n/ �T X

.n/
0

uniformly for all Xn 2 Pn. Letting H nC1
0 D Hn ı H n

0 , it follows that XnC1 ˚

0.nC1/ �T X0 ˚ 0.nC1/ �T X
.nC1/
0 uniformly for all XnC1 2 PnC1 and X0 D

H nC1
0 .XnC1/ 2 P0.

We now use Lemma 3.3 to prove a rudimentary version of Harrington’s theorems.

Theorem 3.4 Given n, we can find …0
1 singletons X; Y such that X —T Y .n/ and

Y —T X .n/.

Proof It is well known (see [11, Section 13.3]) that there exist incomparable
Turing degrees between 0 and 00. Relativizing to 0.n/, let Xn; Yn be such that
0.n/ �T Xn �T 0.nC1/ and 0.n/ �T Yn �T 0.nC1/ and such that Xn —T Yn and
Yn —T Xn. Note that Xn and Yn are �

0;0.n/

2 ; hence Xn and Yn are …
0;0.n/

2 singletons.
Therefore, by the proof of Lemma 3.1, we may safely assume that Xn and Yn are
…

0;0.n/

1 singletons. Apply Lemma 3.3 to Pn D ¹Xn; Ynº to get X0 D H n
0 .Xn/ and

Y0 D H n
0 .Yn/. Note that P0 D ¹X0; Y0º is a …0

1 set; hence X0 and Y0 are …0
1

singletons. Since Xn —T Yn ˚ 0.n/ �T Y
.n/

0 and Xn ˚ 0.n/ �T X0 ˚ 0.n/, we have
X0 —T Y

.n/
0 , and similarly Y0 —T X

.n/
0 . Letting X D X0 and Y D Y0, we obtain

our theorem.

Theorem 3.5 Given n, we can find a countable …0
1 set P such that some Z 2 P

is not a …0
n singleton.

Proof Let Pn be a countable …0
1 set such that some Zn 2 Pn is not isolated

in Pn. (For instance, let Pn D ¹X j 8i 8j .X.i/ ¤ 0 ¤ X.j / ) i D j /º,
and let Zn D 0.) Treating Pn as a …

0;0.n/

1 set, apply Lemma 3.3. Then P0 is a
countable …0

1 set and, because H n
0 W Pn Š P0 is a homeomorphism, Z0 D H n

0 .Zn/

is not isolated in P0. We claim that Z0 is not a …0
n singleton. Otherwise, let e

be such that ¹Z0º D ¹X j X .n/.e/ D 0º. Since Z
.n/
0 .e/ D 0 and Z0 2 P0 and

X
.n/
0 �T Xn ˚ 0.n/ uniformly for all Xn 2 Pn and X0 D H n

0 .Xn/ 2 P0, there exists
j such that X

.n/
0 .e/ D 0 for all Xn 2 Pn such that Xn�j D Zn�j . But Zn is not

isolated in Pn, so there exists Xn 2 Pn such that Xn�j D Zn�j and Xn ¤ Zn.
Thus X

.n/
0 .e/ D 0 and X0 ¤ Z0, which is a contradiction. Letting P D P0 and

Z D Z0, we obtain our theorem.
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4 Proof of Harrington’s Theorems

In order to prove the full version of Harrington’s theorems, we need to show that
Lemma 3.3 holds with n replaced by !. To this end, we first draw out some effective
uniformities which are implicit in the proofs of Lemmas 3.1 and 3.2.

Notation LetW A
e fore D 0; 1; 2; : : :beastandardenumerationofallA-recursively

enumerable subsets of N�. Then

T A
e D

®
� 2 N�

ˇ̌ �
8n � j� j

�
.��n … W A

e /
¯

for e D 0; 1; 2; : : : is a standard enumeration of all …
0;A
1 trees. Hence P A

e D ŒT A
e �

for e D 0; 1; 2; : : : is a standard enumeration of all …
0;A
1 sets.

Remark 11 If F is an A-recursive treemap and T is a …
0;A
1 tree, then F.T / is

again a …
0;A
1 tree. Moreover, this holds uniformly in the sense that there is a primitive

recursive function f such that T A
f .e/

D F.T A
e / and P A

f .e/
D F.P A

e / for all e, and
we can compute a primitive recursive index of f knowing only an A-recursive index
of F .

The next two lemmas are refinements of Lemmas 3.1 and 3.2, respectively.

Lemma 4.1 (refining Lemma 3.1) There is a primitive recursive function f with
the following property. Given e, we can effectively find an A-recursive treemap
F W T A0

e ! T A
f .e/

which induces a homeomorphism F W P A0

e Š P A
f .e/

. It follows
that X ˚ A �T F.X/ ˚ A uniformly for all X 2 P A0

e .

Proof Let T D T A0

e , and let P D P A0

e . Since T A0

e is uniformly …
0;A0

1 ,
it is uniformly …

0;A
2 , say, T D T A0

e D ¹� j 8i 9j R.�; e; i; A�j /º, where
R � N� � N � N � N� is a fixed primitive recursive predicate. Let .�; �/ be a
fixed primitive recursive one-to-one mapping of N�N onto N such that m � .m; n/

and n � .m; n/ for all m and n. Define Q D ŒbT �, where bT D ¹� ˚ � j j� j D j� j

and .8.n; i/ < j� j/ .�..n; i// D the least j such that R.��n; e; i; A�j //º. Thus
Q D ¹X ˚bX j X 2 P º, where bX..n; i// D the least j such that R.X�n; e; i; A�j /.
Moreover, we have an A-recursive treemap F W T ! bT given by F.�/ D � ˚ b� for
all � 2 T , where j� j D jb� j and .8.n; i/ < j� j/ .b�..n; i// D the least j such that
R.��n; e; i; A�j //. Although we cannot expect to have F.T / D bT , we neverthe-
less have F W ŒT � Š ŒbT �; that is, F W P Š F.P / D Q, and F.X/ D X ˚ bX and
X ˚ A �T F.X/ ˚ A uniformly for all X 2 P . The definition of bT shows that bT is
uniformly A-recursive, and hence uniformly …

0;A
1 , so we can find a fixed primitive

recursive function f such that T A
f .e/

D
b
T A0

e for all e and A.

Lemma 4.2 (refining Lemma 3.2) There is a primitive recursive function h with
the following property. Given e, we can effectively find an A0-recursive treemap
H W T A0

e ! T A
h.e/

which induces a homeomorphism H W P A0

e Š P A
h.e/

such that
X ˚ A0 �T H.X/ ˚ A0 �T .H.X/ ˚ A/0 uniformly for all X 2 P A0

e .

Proof Let G be the specific A0-recursive treemap which was constructed in the
proof of Lemma 3.2. By Remark 11 we can find a primitive recursive function g

such that for all e we have G.T A0

e / D T A0

g.e/
, and the restriction of G to T A0

e is a
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treemap from T A0

e to T A0

g.e/
which induces a homeomorphism G W P A0

e Š P A0

g.e/
.

By the construction of G we have X ˚ A0 �T G.X/ ˚ A0 �T .G.X/ ˚ A/0 uni-
formly for all X 2 P A0

e . Now applying Lemma 4.1 we obtain an A-recursive treemap
F W T A0

g.e/
! T A

f .g.e//
which induces a homeomorphism F W P A0

g.e/
Š P A

f .g.e//

such that Y ˚ A �T F.Y / ˚ A uniformly for all Y 2 P A
g.e/

. Thus the treemap
H D F ı G W T A0

e ! T A
f .g.e//

induces a homeomorphism F ı G D H W P A0

e Š

P A
f .g.e//

such that X ˚ A0 �T H.X/ ˚ A0 �T .H.X/ ˚ A/0 uniformly for all
X 2 P A0

e . Our lemma follows upon defining h.e/ D f .g.e//.

We now show that Lemma 3.3 holds with n replaced by !.

Lemma 4.3 Given a …
0;0.!/

1 set P! , we can effectively find a …0
1 set P0 and a

homeomorphism H !
0 W P! Š P0 such that X! ˚ 0.!/ �T X0 ˚ 0.!/ �T X

.!/
0

uniformly for all X! 2 P! and X0 D H !
0 .X!/ 2 P0.

Proof Since P! is a …
0;0.!/

1 set, Remark 8 gives a recursive tree T such that
P! D ¹X j X ˚ 0.!/ 2 ŒT �º. Moreover, from the definition of 0.!/ we
know that 0.!/�n is computable from 0.n/ uniformly for all n. Thus, letting
T! D ¹� j � ˚ 0.!/�j� j 2 T º, we see that P! D ŒT! � and ¹� j j� j � n; � 2

T!º �T 0.n/ uniformly for all n. Define

Te;n D
®
�

ˇ̌
j� j � n

¯
[

®
�

ˇ̌
j� j > n; ��n 2 T! ; � 2 T hnia0.n/

e

¯
:

Thus Te;n is a …
0;0.n/

1 tree, and hence Pe;n D ŒTe;n� is …
0;0.n/

1 uniformly for all n.
In the vein of Lemma 4.2, we claim that there is a primitive recursive function h�

with the following property. Given e and n we can effectively find a 0.nC1/-recursive
treemap

He;n W Te;nC1 ! Th�.e/;n

which induces a homeomorphism He;n W Pe;nC1 Š Ph�.e/;n such that X ˚

0.nC1/ �T He;n.X/ ˚ 0.nC1/ �T .He;n.X/ ˚ 0.n//0 uniformly for all X 2 Pe;nC1,
and in addition He;n.�/ D � for all � such that j� j � n.

To prove our claim, let r be a 3-place primitive recursive function such that
T 0.n/

r.e;n;�/
D ¹� j �a� 2 Te;nº for all e; n; � . We can then write

Te;nC1 D
®
�

ˇ̌
j� j � n

¯
[

®
�a�

ˇ̌
j� j D n; � 2 T 0.nC1/

r.e;nC1;�/

¯
:

Since n is uniformly computable from hnia0.n/, let h� be a primitive recursive func-
tion such that

Th�.e/;n D
®
�

ˇ̌
j� j � n

¯
[

®
�a�

ˇ̌
j� j D n; � 2 T 0.n/

h.r.e;nC1;�//

¯
;

where h is as in Lemma 4.2. For all � and � such that j� j D n and � 2 T 0.nC1/

r.e;nC1;�/

let He;n.�a�/ D �aH.�/, where H W T 0.nC1/

r.e;nC1;�/
! T 0.n/

h.r.e;nC1;�//
is as in Lemma

4.2. Clearly h�.e/ and He;n have the required properties, so our claim is proved.
Let h� and He;n be as in the above claim. By the recursion theorem (see

[11, Chapter 11]), let e� be a fixed point of h�, so that T A
h�.e�/

D T A
e� for all A,

and hence Th�.e�/;n D Te�;n for all n. Let Hn D He�;n and Tn D Te�;n and
Pn D Pe�;n D ŒTn� for all n. As in the proof of Lemma 3.3 we have uniformly
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for each s > n a 0.s/-recursive treemap H s
n D Hn ı � � � ı Hs�1 W Ts ! Tn which

induces a homeomorphism H s
n W Ps Š Pn such that X ˚ 0.s/ �T H s

n.X/ ˚ 0.s/ �T
.H s

n.X//.s�n/ uniformly for all X 2 Ps , and in addition H s
n.�/ D � for all � such

that j� j � n. We also have for each n a 0.!/-recursive treemap H !
n W T! ! Tn

which induces a homeomorphism H !
n W P! Š Pn; namely, H !

n .�/ D H
j� j
n .�/ if

j� j > n and H !
n .�/ D � if j� j � n. Note also that for all n < s < t < ! we have

H t
n D H s

n ı H t
s and H !

n D H s
n ı H !

s . Finally, given X! 2 P! , let Xn D H !
n .X!/

for all n. Then X!�n D Xn�n and Xn ˚ 0.n/ �T X0 ˚ 0.n/ �T X
.n/
0 uniformly for

all n and all X! 2 P! , and hence X! ˚ 0.!/ �T X0 ˚ 0.!/ �T X
.!/
0 uniformly for

all X! 2 P! . This completes the proof.

We now present Harrington’s construction of arithmetically incomparable arithmeti-
cal singletons.

Theorem 4.4 There is a pair of arithmetically incomparable …0
1 singletons.

Proof As in the proof of Theorem 3.4, let X! ; Y! be such that 0.!/ �T X! �T
0.!C1/ and 0.!/ �T Y! �T 0.!C1/ and such that X! —T Y! and Y! —T X! .
Note that X! and Y! are �

0;0.!/

2 and hence …
0;0.!/

2 singletons. Therefore, by the
proof of Lemma 3.1, we may safely assume that X! and Y! are …

0;0.!/

1 singletons.
Apply Lemma 4.3 to P! D ¹X! ; Y!º to get a …0

1 set P0 and a homeomorphism
H !

0 W P! Š P0. Let X0 D H !
0 .X!/, and let Y0 D H !

0 .Y!/. Since P0 D ¹X0; Y0º,
it follows that X0 and Y0 are …0

1 singletons. Since X! —T Y! ˚ 0.!/ �T Y
.!/

0 and
X! ˚ 0.!/ �T X0 ˚ 0.!/, we have X0 —T Y

.!/
0 , and similarly Y0 —T X

.!/
0 . In

particular, X0 and Y0 are arithmetically incomparable.

Finally, we present Harrington’s construction of a ranked point which is not an arith-
metical singleton. This refutes a conjecture which had been known as McLaughlin’s
conjecture and which was suggested by the result of Tanaka [15] mentioned in Re-
mark 2 above.

Theorem 4.5 There is a countable …0
1 set P such that some Z 2 P is not an

arithmetical singleton.

Proof As in the proof of Theorem 3.5, let P! be a countable …0
1 set such that some

Z! 2 P! is not isolated in P! . Apply Lemma 4.3, and note that P0 is a countable
…0

1 set and that Z0 D H !
0 .Z!/ 2 P0 is not isolated in P0. We claim that Z0 is not

an arithmetical singleton. Otherwise, let i be such that ¹Z0º D ¹X j X .!/.i/ D 0º.
Since Z

.!/
0 .i/ D 0 and Z0 2 P0 and X

.!/
0 �T X! ˚0.!/ uniformly for all X! 2 P!

and X0 D H !
0 .X!/ 2 P0, there exists j such that X

.!/
0 .i/ D 0 for all X! 2 P!

such that Z!�j � X! . But Z! is not isolated in P! , so there exists X! 2 P! such
that Z!�j � X! and X! ¤ Z! . Thus X

.!/
0 .i/ D 0 and X0 ¤ Z0, which is a

contradiction. Letting P D P0 and Z D Z0, we obtain our theorem.

Remark 12 Modifying the proof of Lemma 4.3, it is easy to replace ! by a small
recursive ordinal such as ! C ! or ! � ! or !! . Harrington [7] and Gerdes [5] have
shown that Lemma 4.3 and consequently Theorems 4.4 and 4.5 hold generally with
! replaced by any recursive ordinal.
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