Implicit Definability in Arithmetic

Stephen G. Simpson

Abstract

We consider implicit definability over the natural number system $\mathbb{N},+, \times,=$. We present a new proof of two theorems of Leo Harrington. The first theorem says that there exist implicitly definable subsets of \mathbb{N} which are not explicitly definable from each other. The second theorem says that there exists a subset of \mathbb{N} which is not implicitly definable but belongs to a countable, explicitly definable set of subsets of \mathbb{N}. Previous proofs of these theorems have used finite- or infinite-injury priority constructions. Our new proof is easier in that it uses only a nonpriority oracle construction, adapted from the standard proof of the Friedberg jump theorem.

1 Introduction

Definitions Let $\mathbb{N}=\{0,1,2, \ldots, n, \ldots\}=$ the set of all natural numbers. Let $\operatorname{Pow}(\mathbb{N})$ be the powerset of \mathbb{N}, that is, the set of all subsets of \mathbb{N}. A set $X \in \operatorname{Pow}(\mathbb{N})$ is said to be arithmetical if it is explicitly definable over the natural number system $\mathbb{N},+, \times,=$ In other words,

$$
X=\{n \in \mathbb{N} \mid(\mathbb{N},+, \times,=) \models \Phi(n)\}
$$

for some first-order formula $\Phi(n)$ in the language,$+ \times,=$. Given two sets $X, Y \in \operatorname{Pow}(\mathbb{N})$, we say that X is arithmetical in Y if X is explicitly definable from Y; that is,

$$
X=\{n \in \mathbb{N} \mid(\mathbb{N},+, \times, Y,=) \models \Phi(n)\}
$$

for some first-order formula $\Phi(n)$ in the language $+, \times, Y,=$. We say that X and Y are arithmetically incomparable if neither is arithmetical in the other. A set of sets

Received September 3, 2013; accepted January 8, 2014
First published online March 30, 2016
2010 Mathematics Subject Classification: Primary 03D55; Secondary 03D30, 03D28, 03C40, 03D80
Keywords: arithmetical hierarchy, arithmetical singletons, implicit definability, hyperarithmetical sets, Turing jump
© 2016 by University of Notre Dame 10.1215/00294527-3507386
proof of Theorems 4.4 and 4.5 is much easier than the proofs in [1], [5]-[10], and [14]. On the other hand, our proof uses the recursion theorem in exactly the same way as Harrington used it. Harrington [6] has referred to this way of using the recursion theorem as "the shiny little box which was first opened by Sacks [12]."

Remark 6 Beyond Theorems 4.4 and 4.5, we believe we can extend our nonpriority oracle method farther into the transfinite to obtain relatively easy proofs of at least some of the other results of Harrington [7] and Gerdes [5]. However, we reserve that extension for a future paper. In this paper we limit ourselves to providing relatively easy proofs of Theorems 4.4 and 4.5.
Remark 7 The plan of this paper is as follows. In Section 2 we review some basic recursion-theoretic notions. In Section 3 we prove a rudimentary version of Theorems 4.4 and 4.5. In Section 4 we prove Theorems 4.4 and 4.5.

2 Recursion-Theoretic Background

In this section we review some basic notions from recursion theory which are needed for our proof of Theorems 4.4 and 4.5. A good reference for this material is Rogers [11].

Natural numbers are denoted $e, i, j, k, l, m, n, \ldots$. The set of all natural numbers is denoted \mathbb{N}. Instead of working with $\operatorname{Pow}(\mathbb{N})$, the set of all subsets $X \subseteq \mathbb{N}$, we work with $\mathbb{N}^{\mathbb{N}}$, the set of all functions $X: \mathbb{N} \rightarrow \mathbb{N}$. The space $\mathbb{N}^{\mathbb{N}}$ with the product topology is known as the Baire space. Points in $\mathbb{N}^{\mathbb{N}}$ are denoted X, Y, Z, \ldots. Subsets of $\mathbb{N}^{\mathbb{N}}$ are denoted P, Q, \ldots.

Recall that a point $X \in \mathbb{N}^{\mathbb{N}}$ or a set $P \subseteq \mathbb{N}^{\mathbb{N}}$ is arithmetical if and only if it is Π_{n}^{0} for some $n \geq 1$. The hierarchy Π_{n}^{0}, where $n=1,2, \ldots$, is known as the arithmetical hierarchy (see, e.g., [11, Chapters 14-16]). (It is known (see [15]) that every arithmetical set is in arithmetical one-to-one correspondence with a Π_{1}^{0} set. However, we will not need this result here.) A Π_{n}^{0} singleton is a point X such that the singleton set $\{X\}$ is Π_{n}^{0}. Thus X is an arithmetical singleton if and only if it is a Π_{n}^{0} singleton for some $n \geq 1$. A ranked point is a point X such that $X \in P$ for some countable Π_{1}^{0} set P.

Points in $\mathbb{N}^{\mathbb{N}}$ may be viewed as Turing oracles (see, e.g., [11, Chapters 9-13]). Relativizing to a Turing oracle $A \in \mathbb{N}^{\mathbb{N}}$, a point $X \in \mathbb{N}^{\mathbb{N}}$ or a set $P \subseteq \mathbb{N}^{\mathbb{N}}$ is said to be $\Pi_{n}^{0, A}$ if it is Π_{n}^{0} relative to A, and arithmetical in A if it is $\Pi_{n}^{0, A}$ for some n. In particular, a set P is topologically closed if and only if it is $\Pi_{1}^{0, A}$ for some A. A point X such that the singleton set $\{X\}$ is $\Pi_{n}^{0, A}$ is called a $\Pi_{n}^{0, A}$ singleton.

For $A \in \mathbb{N}^{\mathbb{N}}$ we write $\{e\}^{A}(i)=j$ to mean that the e th Turing machine with oracle A and input i halts with output j. We write $\{e\}^{A}(i) \downarrow$ (resp., \uparrow) to mean that the e th Turing machine with oracle A and input i halts (resp., does not halt). Thus $\{e\}^{A}(i) \downarrow$ if and only if $\exists j\left(\{e\}^{A}(i)=j\right)$. For $A, B \in \mathbb{N}^{\mathbb{N}}$ we write $A \leq_{\mathrm{T}} B$ to mean that A is Turing reducible to B, that is, $\exists e \forall i\left(A(i)=\{e\}^{B}(i)\right)$. We write $A \equiv_{\mathrm{T}} B$ to mean that A is Turing equivalent to B, that is, $A \leq_{\mathrm{T}} B$ and $B \leq_{\mathrm{T}} A$. We define $A \oplus B \in \mathbb{N}^{\mathbb{N}}$ by the equations $(A \oplus B)(2 i)=A(i)$ and $(A \oplus B)(2 i+1)=B(i)$. Thus $A \oplus B \leq_{\mathrm{T}} C$ if and only if $A \leq_{\mathrm{T}} C$ and $B \leq_{\mathrm{T}} C$.

For $A \in \mathbb{N}^{\mathbb{N}}$ we write $A^{\prime}=$ the Turing jump of A, defined by

$$
A^{\prime}(e)= \begin{cases}1 & \text { if }\{e\}^{A}(e) \downarrow \\ 0 & \text { if }\{e\}^{A}(e) \uparrow\end{cases}
$$

We write $A^{(n)}=$ the nth Turing jump of A, defined inductively by letting $A^{(0)}=A$ and $A^{(n+1)}=\left(A^{(n)}\right)^{\prime}$ for all n. Recall that A is arithmetical in B if and only if $\exists n\left(A \leq_{\mathrm{T}} B^{(n)}\right)$. For use in the proof of Theorems 3.5 and 4.5, note that for each $n \geq 1$, a set $P \subseteq \mathbb{N}^{\mathbb{N}}$ is Π_{n}^{0} if and only if $\exists e \forall X\left(X \in P \Leftrightarrow X^{(n)}(e)=0\right)$ (see, e.g., [11, Section 14.5]).

We write $A^{(\omega)}=$ the ω th Turing jump of A, defined by

$$
A^{(\omega)}(i)= \begin{cases}A^{(n)}(e) & \text { if } i=3^{n} 5^{e} \\ 0 & \text { otherwise }\end{cases}
$$

Thus $A^{(\omega)}=\bigoplus_{n} A^{(n)}$ and $A^{(n)} \leq_{\mathrm{T}} A^{(\omega)}$ uniformly in n.
Let $0 \in \mathbb{N}^{\mathbb{N}}$ denote the constant zero function. Thus $0^{(n)}=$ the nth Turing jump of 0 , and $0^{(\omega)}=$ the ω th Turing jump of 0 . Note also that X is arithmetical if and only if $X \leq_{\mathrm{T}} 0^{(n)}$ for some n.

3 A Rudimentary Version of Harrington's Theorems

The purpose of this section is to prove a rudimentary version of Harrington's theorems, with "arithmetical" replaced by Π_{n}^{0} for a fixed n. Our rudimentary versions of Theorems 4.4 and 4.5 are Theorems 3.4 and 3.5 , respectively.
Lemma 3.1 Given a $\Pi_{1}^{0, A^{\prime}}$ set P, we can find $a \Pi_{1}^{0, A}$ set Q and a homeomorphism $F: P \cong Q$ such that $X \oplus A \equiv_{\mathrm{T}} F(X) \oplus A$ uniformly for all $X \in P$.
Proof \quad Since P is a $\Pi_{1}^{0, A^{\prime}}$ set, it follows that P is a $\Pi_{2}^{0, A}$ set, say, $P=\{X \mid \forall i \exists j$ $R(X, i, j)\}$, where R is an A-recursive predicate. Define $F: P \cong Q=F(P)$ by letting $F(X)=X \oplus \widehat{X}$, where $\widehat{X}(i)=$ the least j such that $R(X, i, j)$ holds. Clearly Q is a $\Pi_{1}^{0, A}$ set and $X \oplus A \equiv_{\mathrm{T}} F(X) \oplus A$ uniformly for all $X \in P$.
Lemma 3.2 Given a $\Pi_{1}^{0, A^{\prime}}$ set P, we can find $a \Pi_{1}^{0, A}$ set Q and a homeomorphism $H: P \cong Q$ such that $X \oplus A^{\prime} \equiv_{\mathrm{T}} H(X) \oplus A^{\prime} \equiv_{\mathrm{T}}(H(X) \oplus A)^{\prime}$ uniformly for all $X \in P$.
In order to prove Lemma 3.2, we first present some general remarks concerning strings, trees, and treemaps.
Notation (strings) Let $\mathbb{N}^{*}=\bigcup_{l \in \mathbb{N}} \mathbb{N}^{l}=$ the set of strings, that is, finite sequences of natural numbers. For $\sigma=\left\langle n_{0}, n_{1}, \ldots, n_{l-1}\right\rangle \in \mathbb{N}^{*}$ we write $\sigma(i)=n_{i}$ for all $i<|\sigma|=l=$ the length of σ. For $\sigma, \tau \in \mathbb{N}^{*}$ we write $\sigma^{\wedge} \tau=$ the concatenation, σ followed by τ, defined by the conditions $\left|\sigma^{\wedge} \tau\right|=|\sigma|+|\tau|,\left(\sigma^{\wedge} \tau\right)(i)=\sigma(i)$ for all $i<|\sigma|$, and $\left(\sigma^{\wedge} \tau\right)(|\sigma|+i)=\tau(i)$ for all $i<|\tau|$. We write $\sigma \subseteq \tau$ if $\sigma^{\wedge} \rho=\tau$ for some ρ. If $|\sigma| \geq n$, we write $\sigma \upharpoonright n=\langle\sigma(0), \sigma(1), \ldots, \sigma(n-1)\rangle=$ the unique $\rho \subseteq \sigma$ such that $|\rho|=n$. For $X \in \mathbb{N}^{\mathbb{N}}$ we write $X \upharpoonright n=\langle X(0), X(1), \ldots, X(n-1)\rangle=$ the unique $\sigma \subset X$ such that $|\sigma|=n$. If $|\sigma|=|\tau|=n$, we define $\sigma \oplus \tau \in \mathbb{N}^{*}$ by the conditions $|\sigma \oplus \tau|=2 n$ and $(\sigma \oplus \tau)(2 i)=\sigma(i)$ and $(\sigma \oplus \tau)(2 i+1)=\tau(i)$ for all $i<n$.
Definition (trees) A tree is a set $T \subseteq \mathbb{N}^{*}$ such that

$$
\forall \rho \forall \sigma((\rho \subseteq \sigma \text { and } \sigma \in T) \Rightarrow \rho \in T) .
$$

For any tree T we write

$$
[T]=\{\text { paths through } T\}=\{X \mid \forall n(X \upharpoonright n \in T)\}
$$

Remark 8 It is well known (see, e.g., [11, Chapter 15]) that the following statements are pairwise equivalent.

1. P is a $\Pi_{1}^{0, A}$ set.
2. $P=[T]$ for some $\Pi_{1}^{0, A}$ tree T.
3. $P=[T]$ for some A-recursive tree T.
4. $P=\{X \mid X \oplus A \in[T]\}$ for some recursive tree T.

Definition (treemaps) Let T be a tree. A treemap is a function $F: T \rightarrow \mathbb{N}^{*}$ such that

$$
F\left(\sigma^{\wedge}\langle i\rangle\right) \supseteq F(\sigma)^{\wedge}\langle i\rangle
$$

for all $\sigma \in T$ and all $i \in \mathbb{N}$ such that $\sigma^{\wedge}\langle i\rangle \in T$. We then have another tree

$$
F(T)=\{\tau \mid \exists \sigma(\sigma \in T \text { and } \tau \subseteq F(\sigma))\} .
$$

Thus $P=[T]$ and $F(P)=[F(T)]$ are closed sets in the Baire space, and we have a homeomorphism $F: P \cong F(P)$ defined by $F(X)=\bigcup_{n \in \mathbb{N}} F(X \upharpoonright n)$ for all $X \in P$. Note also that the composition of two treemaps is a treemap. A treemap $F: T \rightarrow \mathbb{N}^{*}$ is said to be A-recursive if it is the restriction to T of a partial A-recursive function.

Remark 9 Let T be a tree, and let $F: T \rightarrow \mathbb{N}^{*}$ be a treemap. Given $\tau \in F(T)$, let $\sigma \in T$ be minimal such that $\tau \subseteq F(\sigma)$. Then σ is a substring of τ, that is, $\sigma=\left\langle\tau\left(j_{0}\right), \tau\left(j_{1}\right), \ldots, \tau\left(j_{l-1}\right)\right\rangle$ for some $j_{0}<j_{1}<\cdots<j_{l-1}<|\tau|$. Thus, in the definition of $F(T)$, the quantifier $\exists \sigma$ may be replaced by a bounded quantifier,

$$
F(T)=\{\tau \mid(\exists \sigma \text { substring of } \tau)(\sigma \in T \text { and } \tau \subseteq F(\sigma))\} .
$$

This implies that, for instance, if F and T are A-recursive, then so is $F(T)$.
We are now ready to prove Lemma 3.2.
Proof of Lemma 3.2 Given A, we construct a particular A^{\prime}-recursive treemap $G: \mathbb{N}^{*} \rightarrow \mathbb{N}^{*}$. We define $G(\sigma)$ by induction on $|\sigma|$ beginning with $G(\rangle)=\langle \rangle$. If $G(\sigma)$ has been defined, let $e=|\sigma|$, and for each i let $G\left(\sigma^{\wedge}\langle i\rangle\right)=$ the least $\tau \supseteq G(\sigma)^{\wedge}\langle i\rangle$ such that $\{e\}_{|\tau|}^{\tau \oplus A}(e) \downarrow$ if such a τ exists, otherwise $G\left(\sigma^{\wedge}\langle i\rangle\right)=$ $G(\sigma)^{\wedge}\langle i\rangle$. Clearly G is an A^{\prime}-recursive treemap, and our construction of G implies that for all e and $X,\{e\}^{G(X) \oplus A}(e) \downarrow$ if and only if $\{e\}_{|G(X \upharpoonright e+1)|}^{G(X \backslash e+1) \oplus A}(e) \downarrow$. Thus $X \oplus A^{\prime} \equiv_{\mathrm{T}} G(X) \oplus A^{\prime} \equiv_{\mathrm{T}}(G(X) \oplus A)^{\prime}$ uniformly for all X.

Let G be the A^{\prime}-recursive treemap which was constructed above. Let P be a $\Pi_{1}^{0, A^{\prime}}$ set. By Remarks 8 and 9 we know that the restriction of G to P maps P homeomorphically onto another $\Pi_{1}^{0, A^{\prime}}$ set $G(P)$. Applying Lemma 3.1 to $G(P)$ we obtain a $\Pi_{1}^{0, A}$ set Q and a homeomorphism $F: G(P) \cong Q$ such that $Y \oplus A \equiv_{\mathrm{T}} F(Y) \oplus A$ uniformly for all $Y \in G(P)$. Thus $H=F \circ G$ is a homeomorphism of P onto Q, and for all $X \in P$ we have $G(X) \oplus A \equiv_{\mathrm{T}} F(G(X)) \oplus A=H(X) \oplus A$ uniformly, and hence $X \oplus A^{\prime} \equiv_{\mathrm{T}} H(X) \oplus A^{\prime} \equiv_{\mathrm{T}}(H(X) \oplus A)^{\prime}$ uniformly.

Remark 10 Our proof of Lemma 3.2 via treemaps is similar to the proof of [2, Lemma 5.1]. Within our proof of Lemma 3.2, the construction of the specific treemap G is the same as the standard proof of the Friedberg jump theorem as expounded, for instance, in [11, Section 13.3].

Lemma 3.3 Given a $\Pi_{1}^{0,0^{(n)}}$ set P_{n}, we can find $a \Pi_{1}^{0}$ set P_{0} and a homeomorphism $H_{0}^{n}: P_{n} \cong P_{0}$ such that $X_{n} \oplus 0^{(n)} \equiv_{\mathrm{T}} X_{0} \oplus 0^{(n)} \equiv_{\mathrm{T}} X_{0}^{(n)}$ uniformly for all $X_{n} \in P_{n}$ and $X_{0}=H_{0}^{n}\left(X_{n}\right) \in P_{0}$.

Proof The proof is by induction on n. For $n=0$ there is nothing to prove. For the inductive step, given a $\Pi_{1}^{0,0^{(n+1)}}$ set P_{n+1}, apply Lemma 3.2 with $A=0^{(n)}$ to obtain a $\Pi_{1}^{0,0^{(n)}}$ set P_{n} and a homeomorphism $H_{n}: P_{n+1} \cong P_{n}$ such that $X_{n+1} \oplus 0^{(n+1)} \equiv_{\mathrm{T}} H_{n}\left(X_{n+1}\right) \oplus 0^{(n+1)} \equiv_{\mathrm{T}}\left(H_{n}\left(X_{n+1}\right) \oplus 0^{(n)}\right)^{\prime}$ uniformly for all $X_{n+1} \in P_{n+1}$. Then apply the inductive hypothesis to P_{n} to find a Π_{1}^{0} set P_{0} and a homeomorphism $H_{0}^{n}: P_{n} \cong P_{0}$ such that $X_{n} \oplus 0^{(n)} \equiv_{\mathrm{T}} X_{0} \oplus 0^{(n)} \equiv_{\mathrm{T}} X_{0}^{(n)}$ uniformly for all $X_{n} \in P_{n}$. Letting $H_{0}^{n+1}=H_{n} \circ H_{0}^{n}$, it follows that $X_{n+1} \oplus$ $0^{(n+1)} \equiv_{\mathrm{T}} X_{0} \oplus 0^{(n+1)} \equiv_{\mathrm{T}} X_{0}^{(n+1)}$ uniformly for all $X_{n+1} \in P_{n+1}$ and $X_{0}=$ $H_{0}^{n+1}\left(X_{n+1}\right) \in P_{0}$.

We now use Lemma 3.3 to prove a rudimentary version of Harrington's theorems.
Theorem 3.4 Given n, we can find Π_{1}^{0} singletons X, Y such that $X \not \mathbb{Z}_{T} Y^{(n)}$ and $Y \not \mathbb{T}_{\mathrm{T}} X^{(n)}$.

Proof It is well known (see [11, Section 13.3]) that there exist incomparable Turing degrees between 0 and 0^{\prime}. Relativizing to $0^{(n)}$, let X_{n}, Y_{n} be such that $0^{(n)} \leq_{\mathrm{T}} X_{n} \leq_{\mathrm{T}} 0^{(n+1)}$ and $0^{(n)} \leq_{\mathrm{T}} Y_{n} \leq_{\mathrm{T}} 0^{(n+1)}$ and such that $X_{n} \not \mathbb{Z}_{\mathrm{T}} Y_{n}$ and $Y_{n} \not \mathbb{Z}_{\mathrm{T}} X_{n}$. Note that X_{n} and Y_{n} are $\Delta_{2}^{0,0^{(n)}}$; hence X_{n} and Y_{n} are $\Pi_{2}^{0,0^{(n)}}$ singletons. Therefore, by the proof of Lemma 3.1, we may safely assume that X_{n} and Y_{n} are $\Pi_{1}^{0,0^{(n)}}$ singletons. Apply Lemma 3.3 to $P_{n}=\left\{X_{n}, Y_{n}\right\}$ to get $X_{0}=H_{0}^{n}\left(X_{n}\right)$ and $Y_{0}=H_{0}^{n}\left(Y_{n}\right)$. Note that $P_{0}=\left\{X_{0}, Y_{0}\right\}$ is a Π_{1}^{0} set; hence X_{0} and Y_{0} are Π_{1}^{0} singletons. Since $X_{n} \not \mathbb{T}_{\mathrm{T}} Y_{n} \oplus 0^{(n)} \equiv_{\mathrm{T}} Y_{0}^{(n)}$ and $X_{n} \oplus 0^{(n)} \equiv_{\mathrm{T}} X_{0} \oplus 0^{(n)}$, we have $X_{0} \not \mathbb{Z}_{\mathrm{T}} Y_{0}^{(n)}$, and similarly $Y_{0} \not \mathbb{T}_{\mathrm{T}} X_{0}^{(n)}$. Letting $X=X_{0}$ and $Y=Y_{0}$, we obtain our theorem.

Theorem 3.5 Given n, we can find a countable Π_{1}^{0} set P such that some $Z \in P$ is not a Π_{n}^{0} singleton.

Proof Let P_{n} be a countable Π_{1}^{0} set such that some $Z_{n} \in P_{n}$ is not isolated in P_{n}. (For instance, let $P_{n}=\{X \mid \forall i \forall j(X(i) \neq 0 \neq X(j) \Rightarrow i=j)\}$, and let $Z_{n}=0$.) Treating P_{n} as a $\Pi_{1}^{0,0^{(n)}}$ set, apply Lemma 3.3. Then P_{0} is a countable Π_{1}^{0} set and, because $H_{0}^{n}: P_{n} \cong P_{0}$ is a homeomorphism, $Z_{0}=H_{0}^{n}\left(Z_{n}\right)$ is not isolated in P_{0}. We claim that Z_{0} is not a Π_{n}^{0} singleton. Otherwise, let e be such that $\left\{Z_{0}\right\}=\left\{X \mid X^{(n)}(e)=0\right\}$. Since $Z_{0}^{(n)}(e)=0$ and $Z_{0} \in P_{0}$ and $X_{0}^{(n)} \equiv_{\mathrm{T}} X_{n} \oplus 0^{(n)}$ uniformly for all $X_{n} \in P_{n}$ and $X_{0}=H_{0}^{n}\left(X_{n}\right) \in P_{0}$, there exists j such that $X_{0}^{(n)}(e)=0$ for all $X_{n} \in P_{n}$ such that $X_{n} \upharpoonright j=Z_{n} \upharpoonright j$. But Z_{n} is not isolated in P_{n}, so there exists $X_{n} \in P_{n}$ such that $X_{n} \upharpoonright j=Z_{n} \upharpoonright j$ and $X_{n} \neq Z_{n}$. Thus $X_{0}^{(n)}(e)=0$ and $X_{0} \neq Z_{0}$, which is a contradiction. Letting $P=P_{0}$ and $Z=Z_{0}$, we obtain our theorem.

4 Proof of Harrington's Theorems

In order to prove the full version of Harrington's theorems, we need to show that Lemma 3.3 holds with n replaced by ω. To this end, we first draw out some effective uniformities which are implicit in the proofs of Lemmas 3.1 and 3.2.

Notation Let W_{e}^{A} for $e=0,1,2, \ldots$ be astandardenumeration of all A-recursively enumerable subsets of \mathbb{N}^{*}. Then

$$
T_{e}^{A}=\left\{\sigma \in \mathbb{N}^{*} \mid(\forall n \leq|\sigma|)\left(\sigma \upharpoonright n \notin W_{e}^{A}\right)\right\}
$$

for $e=0,1,2, \ldots$ is a standard enumeration of all $\Pi_{1}^{0, A}$ trees. Hence $P_{e}^{A}=\left[T_{e}^{A}\right]$ for $e=0,1,2, \ldots$ is a standard enumeration of all $\Pi_{1}^{0, A}$ sets.

Remark 11 If F is an A-recursive treemap and T is a $\Pi_{1}^{0, A}$ tree, then $F(T)$ is again a $\Pi_{1}^{0, A}$ tree. Moreover, this holds uniformly in the sense that there is a primitive recursive function f such that $T_{f(e)}^{A}=F\left(T_{e}^{A}\right)$ and $P_{f(e)}^{A}=F\left(P_{e}^{A}\right)$ for all e, and we can compute a primitive recursive index of f knowing only an A-recursive index of F.

The next two lemmas are refinements of Lemmas 3.1 and 3.2, respectively.
Lemma 4.1 (refining Lemma 3.1) There is a primitive recursive function f with the following property. Given e, we can effectively find an A-recursive treemap $F: T_{e}^{A^{\prime}} \rightarrow T_{f(e)}^{A}$ which induces a homeomorphism $F: P_{e}^{A^{\prime}} \cong P_{f(e)}^{A}$. It follows that $X \oplus A \equiv \equiv_{\mathrm{T}} F(X) \oplus A$ uniformly for all $X \in P_{e}^{A^{\prime}}$.

Proof Let $T=T_{e}^{A^{\prime}}$, and let $P=P_{e}^{A^{\prime}}$. Since $T_{e}^{A^{\prime}}$ is uniformly $\Pi_{1}^{0, A^{\prime}}$, it is uniformly $\Pi_{2}^{0, A}$, say, $T=T_{e}^{A^{\prime}}=\{\sigma \mid \forall i \exists j R(\sigma, e, i, A \uparrow j)\}$, where $R \subseteq \mathbb{N}^{*} \times \mathbb{N} \times \mathbb{N} \times \mathbb{N}^{*}$ is a fixed primitive recursive predicate. Let $(-,-)$ be a fixed primitive recursive one-to-one mapping of $\mathbb{N} \times \mathbb{N}$ onto \mathbb{N} such that $m \leq(m, n)$ and $n \leq(m, n)$ for all m and n. Define $Q=[\widehat{T}]$, where $\widehat{T}=\{\sigma \oplus \tau| | \sigma|=|\tau|$ and $(\forall(n, i)<|\tau|)(\tau((n, i))=$ the least j such that $R(\sigma \upharpoonright n, e, i, A \upharpoonright j))\}$. Thus $Q=\{X \oplus \widehat{X} \mid X \in P\}$, where $\widehat{X}((n, i))=$ the least j such that $R(X \upharpoonright n, e, i, A \upharpoonright j)$. Moreover, we have an A-recursive treemap $F: T \rightarrow \widehat{T}$ given by $F(\sigma)=\sigma \oplus \widehat{\sigma}$ for all $\sigma \in T$, where $|\sigma|=|\widehat{\sigma}|$ and $(\forall(n, i)<|\sigma|)(\widehat{\sigma}((n, i))=$ the least j such that $R(\sigma \upharpoonright n, e, i, A \upharpoonright j))$. Although we cannot expect to have $F(T)=\widehat{T}$, we nevertheless have $F:[T] \cong[\widehat{T}]$; that is, $F: P \cong F(P)=Q$, and $F(X)=X \oplus \widehat{X}$ and $X \oplus A \equiv_{\mathrm{T}} F(X) \oplus A$ uniformly for all $X \in P$. The definition of \widehat{T} shows that \widehat{T} is uniformly A-recursive, and hence uniformly $\Pi_{1}^{0, A}$, so we can find a fixed primitive recursive function f such that $T_{f(e)}^{A}=\widehat{T_{e}^{A^{\prime}}}$ for all e and A.

Lemma 4.2 (refining Lemma 3.2) There is a primitive recursive function h with the following property. Given e, we can effectively find an A^{\prime}-recursive treemap $H: T_{e}^{A^{\prime}} \rightarrow T_{h(e)}^{A}$ which induces a homeomorphism $H: P_{e}^{A^{\prime}} \cong P_{h(e)}^{A}$ such that $X \oplus A^{\prime} \equiv_{\mathrm{T}} H(X) \oplus A^{\prime} \equiv_{\mathrm{T}}(H(X) \oplus A)^{\prime}$ uniformly for all $X \in P_{e}^{A^{\prime}}$.

Proof Let G be the specific A^{\prime}-recursive treemap which was constructed in the proof of Lemma 3.2. By Remark 11 we can find a primitive recursive function g such that for all e we have $G\left(T_{e}^{A^{\prime}}\right)=T_{g(e)}^{A^{\prime}}$, and the restriction of G to $T_{e}^{A^{\prime}}$ is a
treemap from $T_{e}^{A^{\prime}}$ to $T_{g(e)}^{A^{\prime}}$ which induces a homeomorphism $G: P_{e}^{A^{\prime}} \cong P_{g(e)}^{A^{\prime}}$. By the construction of G we have $X \oplus A^{\prime} \equiv_{\mathrm{T}} G(X) \oplus A^{\prime} \equiv_{\mathrm{T}}(G(X) \oplus A)^{\prime}$ uniformly for all $X \in P_{e}^{A^{\prime}}$. Now applying Lemma 4.1 we obtain an A-recursive treemap $F: T_{g(e)}^{A^{\prime}} \rightarrow T_{f(g(e))}^{A}$ which induces a homeomorphism $F: P_{g(e)}^{A^{\prime}} \cong P_{f(g(e))}^{A}$ such that $Y \oplus A \equiv_{\mathrm{T}} F(Y) \oplus A$ uniformly for all $Y \in P_{g(e)}^{A}$. Thus the treemap $H=F \circ G: T_{e}^{A^{\prime}} \rightarrow T_{f(g(e))}^{A}$ induces a homeomorphism $F \circ G=H: P_{e}^{A^{\prime}} \cong$ $P_{f(g(e))}^{A}$ such that $X \oplus A^{\prime} \equiv_{\mathrm{T}} H(X) \oplus A^{\prime} \equiv_{\mathrm{T}}(H(X) \oplus A)^{\prime}$ uniformly for all $X \in P_{e}^{A^{\prime}}$. Our lemma follows upon defining $h(e)=f(g(e))$.

We now show that Lemma 3.3 holds with n replaced by ω.
Lemma 4.3 Given a $\Pi_{1}^{0,0^{(\omega)}}$ set P_{ω}, we can effectively find $a \Pi_{1}^{0}$ set P_{0} and a homeomorphism $H_{0}^{\omega}: P_{\omega} \cong P_{0}$ such that $X_{\omega} \oplus 0^{(\omega)} \equiv_{\mathrm{T}} X_{0} \oplus 0^{(\omega)} \equiv_{\mathrm{T}} X_{0}^{(\omega)}$ uniformly for all $X_{\omega} \in P_{\omega}$ and $X_{0}=H_{0}^{\omega}\left(X_{\omega}\right) \in P_{0}$.
Proof Since P_{ω} is a $\Pi_{1}^{0,0^{(\omega)}}$ set, Remark 8 gives a recursive tree T such that $P_{\omega}=\left\{X \mid X \oplus 0^{(\omega)} \in[T]\right\}$. Moreover, from the definition of $0^{(\omega)}$ we know that $0^{(\omega)} \upharpoonright n$ is computable from $0^{(n)}$ uniformly for all n. Thus, letting $T_{\omega}=\left\{\sigma\left|\sigma \oplus 0^{(\omega)} \uparrow\right| \sigma \mid \in T\right\}$, we see that $P_{\omega}=\left[T_{\omega}\right]$ and $\{\sigma||\sigma| \leq n, \sigma \in$ $\left.T_{\omega}\right\} \leq_{\mathrm{T}} 0^{(n)}$ uniformly for all n. Define

$$
T_{e, n}=\{\sigma| | \sigma \mid \leq n\} \cup\left\{\sigma| | \sigma \mid>n, \sigma \upharpoonright n \in T_{\omega}, \sigma \in T_{e}^{\langle n)^{\wedge} 0^{(n)}}\right\} .
$$

Thus $T_{e, n}$ is a $\Pi_{1}^{0,0^{(n)}}$ tree, and hence $P_{e, n}=\left[T_{e, n}\right]$ is $\Pi_{1}^{0,0^{(n)}}$ uniformly for all n.
In the vein of Lemma 4.2, we claim that there is a primitive recursive function h^{*} with the following property. Given e and n we can effectively find a $0^{(n+1)}$-recursive treemap

$$
H_{e, n}: T_{e, n+1} \rightarrow T_{h^{*}(e), n}
$$

which induces a homeomorphism $H_{e, n}: P_{e, n+1} \cong P_{h^{*}(e), n}$ such that $X \oplus$ $0^{(n+1)} \equiv_{\mathrm{T}} H_{e, n}(X) \oplus 0^{(n+1)} \equiv_{\mathrm{T}}\left(H_{e, n}(X) \oplus 0^{(n)}\right)^{\prime}$ uniformly for all $X \in P_{e, n+1}$, and in addition $H_{e, n}(\sigma)=\sigma$ for all σ such that $|\sigma| \leq n$.

To prove our claim, let r be a 3-place primitive recursive function such that $T_{r(e, n, \sigma)}^{0^{(n)}}=\left\{\tau \mid \sigma^{\wedge} \tau \in T_{e, n}\right\}$ for all e, n, σ. We can then write

$$
T_{e, n+1}=\{\sigma| | \sigma \mid \leq n\} \cup\left\{\sigma^{\wedge} \tau| | \sigma \mid=n, \tau \in T_{r(e, n+1, \sigma)}^{0^{(n+1)}}\right\}
$$

Since n is uniformly computable from $\langle n\rangle^{\wedge} 0^{(n)}$, let h^{*} be a primitive recursive function such that

$$
T_{h^{*}(e), n}=\{\sigma| | \sigma \mid \leq n\} \cup\left\{\sigma^{\wedge} \tau| | \sigma \mid=n, \tau \in T_{h(r(e, n+1, \sigma))}^{0^{(n)}}\right\}
$$

where h is as in Lemma 4.2. For all σ and τ such that $|\sigma|=n$ and $\tau \in T_{r(e, n+1, \sigma)}^{0^{(n+1)}}$ let $H_{e, n}\left(\sigma^{\wedge} \tau\right)=\sigma^{\wedge} H(\tau)$, where $H: T_{r(e, n+1, \sigma)}^{0^{(n+1)}} \rightarrow T_{h(r(e, n+1, \sigma))}^{0^{(n)}}$ is as in Lemma 4.2. Clearly $h^{*}(e)$ and $H_{e, n}$ have the required properties, so our claim is proved.

Let h^{*} and $H_{e, n}$ be as in the above claim. By the recursion theorem (see [11, Chapter 11]), let e^{*} be a fixed point of h^{*}, so that $T_{h^{*}\left(e^{*}\right)}^{A}=T_{e^{*}}^{A}$ for all A, and hence $T_{h^{*}\left(e^{*}\right), n}=T_{e^{*}, n}$ for all n. Let $H_{n}=H_{e^{*}, n}$ and $T_{n}=T_{e^{*}, n}$ and $P_{n}=P_{e^{*}, n}=\left[T_{n}\right]$ for all n. As in the proof of Lemma 3.3 we have uniformly
for each $s>n$ a $0^{(s)}$-recursive treemap $H_{n}^{s}=H_{n} \circ \cdots \circ H_{s-1}: T_{s} \rightarrow T_{n}$ which induces a homeomorphism $H_{n}^{s}: P_{s} \cong P_{n}$ such that $X \oplus 0^{(s)} \equiv_{\mathrm{T}} H_{n}^{s}(X) \oplus 0^{(s)} \equiv_{\mathrm{T}}$ $\left(H_{n}^{s}(X)\right)^{(s-n)}$ uniformly for all $X \in P_{s}$, and in addition $H_{n}^{s}(\sigma)=\sigma$ for all σ such that $|\sigma| \leq n$. We also have for each n a $0^{(\omega)}$-recursive treemap $H_{n}^{\omega}: T_{\omega} \rightarrow T_{n}$ which induces a homeomorphism $H_{n}^{\omega}: P_{\omega} \cong P_{n}$; namely, $H_{n}^{\omega}(\sigma)=H_{n}^{|\sigma|}(\sigma)$ if $|\sigma|>n$ and $H_{n}^{\omega}(\sigma)=\sigma$ if $|\sigma| \leq n$. Note also that for all $n<s<t<\omega$ we have $H_{n}^{t}=H_{n}^{s} \circ H_{s}^{t}$ and $H_{n}^{\omega}=H_{n}^{s} \circ H_{s}^{\omega}$. Finally, given $X_{\omega} \in P_{\omega}$, let $X_{n}=H_{n}^{\omega}\left(X_{\omega}\right)$ for all n. Then $X_{\omega} \upharpoonright n=X_{n} \upharpoonright n$ and $X_{n} \oplus 0^{(n)} \equiv_{\mathrm{T}} X_{0} \oplus 0^{(n)} \equiv_{\mathrm{T}} X_{0}^{(n)}$ uniformly for all n and all $X_{\omega} \in P_{\omega}$, and hence $X_{\omega} \oplus 0^{(\omega)} \equiv_{\mathrm{T}} X_{0} \oplus 0^{(\omega)} \equiv_{\mathrm{T}} X_{0}^{(\omega)}$ uniformly for all $X_{\omega} \in P_{\omega}$. This completes the proof.

We now present Harrington's construction of arithmetically incomparable arithmetical singletons.

Theorem 4.4 There is a pair of arithmetically incomparable Π_{1}^{0} singletons.
Proof As in the proof of Theorem 3.4, let X_{ω}, Y_{ω} be such that $0^{(\omega)} \leq_{\mathrm{T}} X_{\omega} \leq_{\mathrm{T}}$ $0^{(\omega+1)}$ and $0^{(\omega)} \leq_{\mathrm{T}} Y_{\omega} \leq_{\mathrm{T}} 0^{(\omega+1)}$ and such that $X_{\omega} \not \mathbb{Z}_{\mathrm{T}} Y_{\omega}$ and $Y_{\omega} \not \mathbb{Z}_{\mathrm{T}} X_{\omega}$. Note that X_{ω} and Y_{ω} are $\Delta_{2}^{0,0^{(\omega)}}$ and hence $\Pi_{2}^{0,0^{(\omega)}}$ singletons. Therefore, by the proof of Lemma 3.1, we may safely assume that X_{ω} and Y_{ω} are $\Pi_{1}^{0,0^{(\omega)}}$ singletons. Apply Lemma 4.3 to $P_{\omega}=\left\{X_{\omega}, Y_{\omega}\right\}$ to get a Π_{1}^{0} set P_{0} and a homeomorphism $H_{0}^{\omega}: P_{\omega} \cong P_{0}$. Let $X_{0}=H_{0}^{\omega}\left(X_{\omega}\right)$, and let $Y_{0}=H_{0}^{\omega}\left(Y_{\omega}\right)$. Since $P_{0}=\left\{X_{0}, Y_{0}\right\}$, it follows that X_{0} and Y_{0} are Π_{1}^{0} singletons. Since $X_{\omega} \not \mathbb{Z}_{\mathrm{T}} Y_{\omega} \oplus 0^{(\omega)} \equiv_{\mathrm{T}} Y_{0}^{(\omega)}$ and $X_{\omega} \oplus 0^{(\omega)} \equiv_{\mathrm{T}} X_{0} \oplus 0^{(\omega)}$, we have $X_{0} \not Z_{\mathrm{T}} Y_{0}^{(\omega)}$, and similarly $Y_{0} \not \not_{\mathrm{T}} X_{0}^{(\omega)}$. In particular, X_{0} and Y_{0} are arithmetically incomparable.

Finally, we present Harrington's construction of a ranked point which is not an arithmetical singleton. This refutes a conjecture which had been known as McLaughlin's conjecture and which was suggested by the result of Tanaka [15] mentioned in Remark 2 above.

Theorem 4.5 There is a countable Π_{1}^{0} set P such that some $Z \in P$ is not an arithmetical singleton.
Proof As in the proof of Theorem 3.5, let P_{ω} be a countable Π_{1}^{0} set such that some $Z_{\omega} \in P_{\omega}$ is not isolated in P_{ω}. Apply Lemma 4.3, and note that P_{0} is a countable Π_{1}^{0} set and that $Z_{0}=H_{0}^{\omega}\left(Z_{\omega}\right) \in P_{0}$ is not isolated in P_{0}. We claim that Z_{0} is not an arithmetical singleton. Otherwise, let i be such that $\left\{Z_{0}\right\}=\left\{X \mid X^{(\omega)}(i)=0\right\}$. Since $Z_{0}^{(\omega)}(i)=0$ and $Z_{0} \in P_{0}$ and $X_{0}^{(\omega)} \equiv_{\mathrm{T}} X_{\omega} \oplus 0^{(\omega)}$ uniformly for all $X_{\omega} \in P_{\omega}$ and $X_{0}=H_{0}^{\omega}\left(X_{\omega}\right) \in P_{0}$, there exists j such that $X_{0}^{(\omega)}(i)=0$ for all $X_{\omega} \in P_{\omega}$ such that $Z_{\omega} \upharpoonright j \subset X_{\omega}$. But Z_{ω} is not isolated in P_{ω}, so there exists $X_{\omega} \in P_{\omega}$ such that $Z_{\omega} \upharpoonright j \subset X_{\omega}$ and $X_{\omega} \neq Z_{\omega}$. Thus $X_{0}^{(\omega)}(i)=0$ and $X_{0} \neq Z_{0}$, which is a contradiction. Letting $P=P_{0}$ and $Z=Z_{0}$, we obtain our theorem.

Remark 12 Modifying the proof of Lemma 4.3, it is easy to replace ω by a small recursive ordinal such as $\omega+\omega$ or $\omega \cdot \omega$ or ω^{ω}. Harrington [7] and Gerdes [5] have shown that Lemma 4.3 and consequently Theorems 4.4 and 4.5 hold generally with ω replaced by any recursive ordinal.

References

[1] Ash, C. J., and J. F. Knight, Computable Structures and the Hyperarithmetical Hierarchy, vol. 144 of Studies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam, 2000. MR 1767842. 330, 331
[2] Cole, J. A., and S. G. Simpson, "Mass problems and hyperarithmeticity," Journal of Mathematical Logic, vol. 7 (2007), pp. 125-43. Zbl 1150.03013. MR 2423947. DOI 10.1142/S0219061307000652. 333
[3] Feferman, S., "Some applications of the notions of forcing and generic sets," Fundamenta Mathematicae, vol. 56 (1964/1965), pp. 325-45. Zbl 0129.26401. MR 0176925. 330
[4] Fokina, E. B., S.-D. Friedman, and A. Törnquist, "The effective theory of Borel equivalence relations," Annals of Pure and Applied Logic, vol. 161 (2010), pp. 837-50. Zbl 1223.03031. MR 2601014. DOI 10.1016/j.apal.2009.10.002. 330
[5] Gerdes, P. M., "Harrington's solution to McLaughlin's conjecture and non-uniform selfmoduli," preprint, arXiv:1012.3427v2 [math.LO]. 330, 331, 337
[6] Harrington, L. A., "Arithmetically incomparable arithmetic singletons," handwritten, 28 pp., April 1975. 330, 331
[7] Harrington, L. A., "McLaughlin's conjecture," handwritten, 11 pp., September 1976. 330, 331, 337
[8] Hinman, P. G., and T. A. Slaman, "Jump embeddings in the Turing degrees," Journal of Symbolic Logic, vol. 56 (1991), pp. 563-91. Zbl 0745.03036. MR 1133085. DOI 10.2307/2274700. 330
[9] Montalbán, A., "There is no ordering on the classes in the generalized high/low hierarchies," Archive for Mathematical Logic, vol. 45 (2006), pp. 215-31. Zbl 1099.03030. MR 2209744. DOI 10.1007/s00153-005-0304-0. 330
[10] Odifreddi, P., Classical Recursion Theory, Vol. II, vol. 143 of Studies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam, 1999. MR 1718169. 330, 331
[11] Rogers, H., Jr., Theory of Recursive Functions and Effective Computability, McGrawHill, New York, 1967. MR 0224462. 330, 331, 332, 333, 334, 336
[12] Sacks, G. E., "On a theorem of Lachlan and Martin," Proceedings of the American Mathematical Society, vol. 18 (1967), pp. 140-41. Zbl 0154.00603. MR 0207558. 331
[13] Sacks, G. E., Higher Recursion Theory, vol. 2 of Perspectives in Mathematical Logic, Springer, Berlin, 1990. MR 1080970. DOI 10.1007/BFb0086109. 330
[14] Simpson, M. F., "Arithmetic degrees: Initial segments, ω-REA operators and the ω-jump (recursion theory)," Ph.D. dissertation, Cornell University, Ithaca, N.Y., 1985. MR 2634405. 330, 331
[15] Tanaka, H., "A property of arithmetic sets," Proceedings of the American Mathematical Society, vol. 31 (1972), pp. 521-24. Zbl 0251.02044. MR 0286661. 330, 331, 337

Acknowledgments

This paper is based on a two-hour tutorial of the same title given February 22-23, 2013 at the Sendai Logic School, Tohoku University, Sendai, Japan. The author is grateful to Professor Kazuyuki Tanaka for organizing the school and inviting him to Sendai. The author's research is supported by the Eberly College of Science at the Pennsylvania State University, and by Simons Foundation Collaboration Grant 276282.

Department of Mathematics Vanderbilt University
Nashville, Tennessee 37240
USA
and
Department of Mathematics
Pennsylvania State University
University Park, Pennsylvania 16802
USA
simpson@math.psu.edu
http://www.math.psu.edu/simpson

