Translator Disclaimer
2013 Reducts of the Random Bipartite Graph
Yun Lu
Notre Dame J. Formal Logic 54(1): 33-46 (2013). DOI: 10.1215/00294527-1731371

Abstract

Let Γ be the random bipartite graph, a countable graph with two infinite sides, edges randomly distributed between the sides, but no edges within a side. In this paper, we investigate the reducts of Γ that preserve sides. We classify the closed permutation subgroups containing the group Aut ( Γ ) , where Aut ( Γ ) is the group of all isomorphisms and anti-isomorphisms of Γ preserving the two sides. Our results rely on a combinatorial theorem of Nešetřil and Rödl and a strong finite submodel property for Γ .

Citation

Download Citation

Yun Lu. "Reducts of the Random Bipartite Graph." Notre Dame J. Formal Logic 54 (1) 33 - 46, 2013. https://doi.org/10.1215/00294527-1731371

Information

Published: 2013
First available in Project Euclid: 14 December 2012

zbMATH: 1285.03043
MathSciNet: MR3007960
Digital Object Identifier: 10.1215/00294527-1731371

Subjects:
Primary: 03C99
Secondary: 05C99

Keywords: bipartite, random, reduct

Rights: Copyright © 2013 University of Notre Dame

JOURNAL ARTICLE
14 PAGES


SHARE
Vol.54 • No. 1 • 2013
Back to Top