Open Access
Fall 1995 On Finite-Valued Propositional Logical Calculi
O. Anshakov, S. Rychkov
Notre Dame J. Formal Logic 36(4): 606-629 (Fall 1995). DOI: 10.1305/ndjfl/1040136920

Abstract

In this paper we describe, in a purely algebraic language, truth-complete finite-valued propositional logical calculi extending the classical Boolean calculus. We also give a new proof of the Completeness Theorem for such calculi. We investigate the quasi-varieties of algebras playing an analogous role in the theory of these finite-valued logics to the role played by the variety of Boolean algebras in classical logic.

Citation

Download Citation

O. Anshakov. S. Rychkov. "On Finite-Valued Propositional Logical Calculi." Notre Dame J. Formal Logic 36 (4) 606 - 629, Fall 1995. https://doi.org/10.1305/ndjfl/1040136920

Information

Published: Fall 1995
First available in Project Euclid: 17 December 2002

zbMATH: 0852.03009
MathSciNet: MR1368471
Digital Object Identifier: 10.1305/ndjfl/1040136920

Subjects:
Primary: 03B50
Secondary: 03G20 , 08C15

Rights: Copyright © 1995 University of Notre Dame

Vol.36 • No. 4 • Fall 1995
Back to Top