Open Access
Fall 1995 Approximation Logic and Strong Bunge Algebra
Michiro Kondo
Notre Dame J. Formal Logic 36(4): 595-605 (Fall 1995). DOI: 10.1305/ndjfl/1040136919

Abstract

In this paper we give an axiom system of a logic which we call an approximation logic (AL), whose Lindenbaum-Tarski algebra is a strong Bunge algebra (or simply s-Bunge algebra), and show that

For every s-Bunge algebra $B$, a quotient algebra $B^*$ by a maximal filter is isomorphic to the simplest nontrivial s-Bunge algebra $\Omega=\{0,a,1\}$;

The Lindenbaum algebra of AL is an s-Bunge algebra;

AL is complete;

AL is decidable.

Citation

Download Citation

Michiro Kondo. "Approximation Logic and Strong Bunge Algebra." Notre Dame J. Formal Logic 36 (4) 595 - 605, Fall 1995. https://doi.org/10.1305/ndjfl/1040136919

Information

Published: Fall 1995
First available in Project Euclid: 17 December 2002

zbMATH: 0843.03015
MathSciNet: MR1368470
Digital Object Identifier: 10.1305/ndjfl/1040136919

Subjects:
Primary: 03B50
Secondary: 03B25 , 03G25

Rights: Copyright © 1995 University of Notre Dame

Vol.36 • No. 4 • Fall 1995
Back to Top