Open Access
Translator Disclaimer
September 2012 The Calogero-Moser partition for G(m,d,n)
Gwyn Bellamy
Nagoya Math. J. 207: 47-77 (September 2012). DOI: 10.1215/00277630-1630023

Abstract

We show that it is possible to deduce the Calogero-Moser partition of the irreducible representations of the complex reflection groups G(m,d,n) from the corresponding partition for G(m,1,n). This confirms, in the case W=G(m,d,n), a conjecture of Gordon and Martino relating the Calogero-Moser partition to Rouquier families for the corresponding cyclotomic Hecke algebra.

Citation

Download Citation

Gwyn Bellamy. "The Calogero-Moser partition for G(m,d,n)." Nagoya Math. J. 207 47 - 77, September 2012. https://doi.org/10.1215/00277630-1630023

Information

Published: September 2012
First available in Project Euclid: 26 July 2012

zbMATH: 1259.20003
MathSciNet: MR2957142
Digital Object Identifier: 10.1215/00277630-1630023

Subjects:
Primary: 05E10 , 16G99

Rights: Copyright © 2012 Editorial Board, Nagoya Mathematical Journal

JOURNAL ARTICLE
31 PAGES


SHARE
Vol.207 • September 2012
Back to Top