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THE CALOGERO-MOSER PARTITION FOR G(m,d,n)

GWYN BELLAMY

Abstract. We show that it is possible to deduce the Calogero-Moser parti-

tion of the irreducible representations of the complex reflection groups G(m,d,

n) from the corresponding partition for G(m,1, n). This confirms, in the case

W = G(m,d,n), a conjecture of Gordon and Martino relating the Calogero-

Moser partition to Rouquier families for the corresponding cyclotomic Hecke

algebra.

§1. Introduction

1.1.
Let W be a finite complex reflection group. Associated to W is a family of

noncommutative algebras, the rational Cherednik algebras. These algebras
depend on a pair of parameters, t and c (precise definitions are given in
Section 2.1). At t = 0 the algebras are finite modules over their centers. The
aim of this paper is to continue the study of a certain finite-dimensional
quotient of the rational Cherednik algebra at t = 0, the restricted rational
Cherednik algebra. The blocks of the restricted rational Cherednik algebra
induce a partitioning of the set Irr(W ) of irreducible W -modules, called the
Calogero-Moser partition. Using the geometry of certain quiver varieties,
Gordon and Martino [GM] have given an explicit combinatorial description
of the Calogero-Moser partition when W = Cm � Sn. We show that Clifford
theoretic arguments can be used to extend this result to the normal sub-
groups G(m,d,n) of Cm � Sn. Gordon and Martino [GM] conjecture that
the Calogero-Moser partition should be related, in some precise way, to the
Rouquier blocks of a particular Hecke algebra associated to the same com-
plex reflection group W . This conjecture is refined in [M] and, by comparing
the combinatorial description of these partitions, is shown to be true when
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W = Cm � Sn. A consequence of the main result of this paper is that the con-
jecture as stated in [M, Conjecture 2.7(i)] is true for all G(m,d,n). However,
it is important to note here that, when n = 2 and d is even, there are certain
unequal parameter cases where our methods fail (see Section 5.3 for details).
In these cases it is not known what the Calogero-Moser partition is.

§2. The rational Cherednik algebra at t = 0

2.1. Definitions and notation
Let W be a complex reflection group, let h be its reflection representation

over C with rank h = n, and let S(W ) be the set of all complex reflections
in W . Let (·, ·) : h × h∗ → C be the natural pairing defined by (y,x) = x(y).
For s ∈ S(W ), fix αs ∈ h∗ to be a basis of the 1-dimensional space Im(s −
1)|h∗ , and fix α∨

s ∈ h to be a basis of the 1-dimensional space Im(s − 1)|h,
normalized so that αs(α∨

s ) = 2. Choose c : S(W ) → C to be a W -equivariant
function, and choose t to be a complex number. The rational Cherednik
algebra Ht,c(W ), as introduced by Etingof and Ginzburg [EG, p. 250], is
the quotient of the skew group algebra of the tensor algebra, T (h ⊕ h∗)�W ,
by the ideal generated by the relations

[x1, x2] = 0, [y1, y2] = 0,
(1)

[x1, y1] = t(y1, x1) −
∑
s∈ S

c(s)(y1, αs)(α∨
s , x1)s,

for all x1, x2 ∈ h∗ and y1, y2 ∈ h.
For any ν ∈ C\{0}, the algebras Hνt,νc(W ) and Ht,c(W ) are isomorphic.

In this article we will consider only the case t = 0; therefore, we are free to
rescale c by ν whenever this is convenient.

A fundamental result for rational Cherednik algebras, proved by Etingof
and Ginzburg [EG, Theorem 1.3], is that the Poincaré-Birkhoff-Witt (PBW)
property holds for all t,c. That is, there is a vector space isomorphism

(2) Ht,c(W ) ∼→ C[h] ⊗ CW ⊗ C[h∗].

2.2. The restricted rational Cherednik algebra
Let us now concentrate on the case t = 0, and we omit t from the notation.

In this case the algebra Hc(W ) is a finite module over its center Zc(W ). By
[EG, Proposition 4.5], we have an inclusion A = C[h]W ⊗ C[h∗]W ⊂ Zc. This
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allows us to define the restricted rational Cherednik algebra H̄c(W ) as

H̄c(W ) =
Hc(W )

A+Hc(W )
,

where A+ denotes the ideal in A of elements with zero constant terms.
The PBW property (2) implies that H̄c(W ) ∼= C[h]coW ⊗ CW ⊗ C[h∗]coW

as vector spaces, where C[h]coW := C[h]/〈C[h]W+ 〉 is the coinvariant ring of h

with respect to W . In particular, dim H̄c(W ) = |W |3. The inclusion C[h]W ⊗
C[h∗]W ↪→ Zc(W ) defines a surjective, finite morphism Υ : Spec(Zc(W )) �
h∗/W × h/W .

2.3. The Calogero-Moser partition
Fix a complete set of nonisomorphic simple W -modules, and denote

it by Irr(W ). Following [GM], we define the Calogero-Moser partition of
Irr H̄c(W ) to be the set of equivalence classes of Irr H̄c(W ) under the equiv-
alence relation L ∼ M if and only if L and M belong to the same block of
H̄c(W ). The set of equivalence classes will be denoted CMc(W ). It has been
shown (see [G1, Proposition 4.3]) that Irr H̄c(W ) can be naturally identified
with Irr(W ). Thus, the Calogero-Moser partition CMc(W ) will be thought
of as a partition of Irr(W ) throughout this article. Given λ,μ ∈ Irr(W ), we
say that λ,μ belong to the same partition of CMc(W ) if they are in the
same equivalence class.

§3. Blocks of normal subgroups

3.1.
Throughout this section we fix an irreducible complex reflection group

W with reflection representation h. Moreover, we assume that there exists
a normal subgroup K � W such that K acts, via inclusion in W , on h as a
complex reflection group (though h need not be irreducible as a K-module)
and that W/K ∼= Cd, the cyclic group of order d. Since K is normal in W , the
group W acts on S(K) by conjugation. Let us fix a W -equivariant function
c : S(K) → C. We extend this to a W -equivariant function c : S(W ) → C by
setting c(s) = 0 for s ∈ S(W )\S(K). Note that the partition of S(K) into
K-orbits can be finer than the corresponding partition into W -orbits. Thus,
a K-equivariant function on S(K) is not always W -equivariant. However, as
will be shown below, this problem does not occur in the cases we consider.
For our choice of parameter c, the defining relations (1) show that the
natural map T (h ⊕ h∗) � K → Ht,c(W ) descends to an algebra morphism
Ht,c(K) → Ht,c(W ). The PBW property (2) shows that this map is injective.
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Proposition 3.1. For c as defined above, the algebra Ht,c(K) is a sub-
algebra of Ht,c(W ).

3.2.
As explained in the introduction, the goal of this article is to relate the

Calogero-Moser partition of K to the Calogero-Moser partition of W . How-
ever, the algebra H̄c(K) is not a subalgebra of H̄c(W ). To overcome this,
we study an intermediate algebra, H̃c(K), which is defined to be the image
of Hc(K) in H̄c(W ). Thus, we are in the following setup:

H0,c(K) H0,c(W )

H̃c(K) H̄c(W )

H̄c(K)

where the horizontal arrows are inclusions. To be precise, H̃c(K) := H0,c(K)/
A+ · H0,c(K), where A = C[h]W ⊗ C[h∗]W and where A+ is the ideal of
polynomials with constant term zero. The PBW property (2) implies that
H̃c(K) ∼= C[h]coW ⊗ CK ⊗ C[h∗]coW and hence has dimension |K| · |W |2. The
idea is to relate the block partition of H̃c(K) to CMc(W ) via the formalism
of twisted symmetric algebras. Proposition 3.3 below shows that this allows
us to deduce information about the partition CMc(K).

3.3.
As noted in Section 2.3, the set {L(λ) | λ ∈ Irr(K)} is a complete set

of nonisomorphic simple modules for H̄c(K). There is a natural surjective
map H̃c(K) � H̄c(K), and the kernel of this map is generated by certain
central nilpotent elements of H̃c(K). Therefore, the kernel is contained in
the radical of H̃c(K). This implies that {L(λ) | λ ∈ Irr(K)} is also a complete
set of nonisomorphic simple modules for H̃c(K) and that the block partition
of H̃c(K) corresponds to a partition of the set Irr(K). In particular, the
space L(λ) is both a simple H̄c(K)- and H̃c(K)-module. However, when we
wish to consider L(λ) as an H̃c(K)-module we will denote it by L̃(λ).

Proposition 3.3. The Calogero-Moser partition CMc(K) of Irr(K) and
the block partition of H̃c(K) on Irr(K) are equal.
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Proof. Let us again denote by A the algebra C[h]W ⊗ C[h∗]W and define
B = C[h]K ⊗ C[h∗]K . Then we have inclusions A ⊂ B ⊂ Z(Hc(K)) ⊂ Hc(K).
The proposition will follow from an application of a result of Müller. (The
version we use here is stated in [BG, Proposition 2.7].) Recall that A+ is
the maximal ideal of elements with constant term zero in A. Let B+ be the
maximal ideal of elements with constant term zero in B. Fix Z := Z(Hc(K))
and H := Hc(K). Müller’s theorem says that the primitive central idempo-
tents of H/A+ · H are the images of the primitive idempotents of Z/A+ · Z,
and similarly, the primitive central idempotents of H/B+ · H are the images
of the primitive idempotents of Z/B+ · Z. However, A+ · Z ⊂ B+ · Z, and
B+ · Z/A+ · Z is a nilpotent ideal in Z/A+ · Z; therefore, the primitive
idempotents of Z/B+ · Z are the images of the primitive idempotents of
Z/A+ · Z. This implies that the primitive central idempotents of H/B+ · H

are the images of the primitive central idempotents of H/A+ · H . This is
equivalent to the statement of Proposition 3.3.

3.4.
The following lemma will be required later.

Lemma 3.4. We can choose a set {f1, . . . , fn} of homogeneous, alge-
braically independent generators of C[h]K and positive integers a1, . . . , an

such that {fa1
1 , . . . , fan

n } is a set of homogeneous, algebraically independent
generators of C[h]W and a1 · · · an = d.

Proof. The ring C[h]K is N-graded with (C[h]K)0 = C. Therefore, m :=
C[h]K+ , the ideal of polynomials with zero constant terms, is the unique
maximal, graded ideal of C[h]K . The group W acts on m and hence also on
m2. Let U be a homogeneous, W -stable complement to m2 in m. By [BBR,
lemme 2.1], U generates C[h]K and so C[h]K = C[U ∗]. The action of W

on U ∗ factors through Cd. Since C[U ∗]Cd = C[h]W is a polynomial ring, the
Chevalley-Shephard-Todd theorem (see [Co, Theorem 1.2]) says that Cd acts
on U ∗ as a complex reflection group. Therefore, we can decompose U into
a direct sum of 1-dimensional, homogeneous Cd-modules, U =

⊕n
i=1 C · fi,

and Cd = Ca1 × · · · × Can such that the action of Cd on C · fi factors through
Cai (with Cai acting faithfully on C · fi). Then C[h]W = C[fa1

1 , . . . , fan
n ], and

the fact that C[h]W is a polynomial ring in n variables means that the
polynomials fa1

1 , . . . , fan
n are algebraically independent.

Remark. For W = G(m,1, n) and K = G(m,d,n) (as defined in Sec-
tion 5), we can make an explicit choice of invariant polynomials as described
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in Lemma 3.4. Let ei(x1, . . . , xn) denote the ith elementary symmetric poly-
nomial in x1, . . . , xn. By [Co, p. 387], the following are a choice of alge-
braically independent, homogeneous generators for C[h]W :

ei(xm
1 , . . . , xm

n ), 1 ≤ i < n and (x1, . . . , xn)mn.

In Lemma 3.4, we take fn to be (x1, . . . , xn)
nm
d and fi = ei(xm

1 , . . . , xm
n ) for

1 ≤ i < n so that ai = 1 for 1 ≤ i < n and an = d.

§4. Automorphisms of rational Cherednik algebras

4.1.
The group W is a finite subgroup of GL(h). Let us choose an element

σ ∈ NGL(h)(W ) ⊂ GL(h). Then σ is an automorphism of W , and we can
regard it as an algebra automorphism of CW by making σ act trivially
on C. Moreover, σ acts naturally on h∗ as (σ · x)(y) = x(σ−1 · y) for x ∈ h∗

and y ∈ h. Therefore, σ also acts on C[h∗] and C[h]. Let us explicitly write
S(W ) = {C1, . . . ,Ck } for the set of conjugacy classes of reflections in W .
Then σ permutes the Ci, and regarding σ as an element of the symmet-
ric group Sk, we write σ · Ci = Cσ(i). It can be checked from the defining
relations (1) that the maps

x �→ σ(x), y �→ σ(y), w �→ σ(w), x ∈ h∗, y ∈ h,w ∈ W

define an algebra isomorphism

σ : Ht,c(W ) ∼−→ Ht,σ(c)(W ),

where σ(c) = σ(c1, . . . , ck) = (cσ−1(1), . . . , cσ−1(k)). Since σ normalizes W ,
there is a well-defined action of σ on C[h]W ⊗ C[h∗]W . Hence, σ descends to
an isomorphism σ : H̄c(W ) ∼→ H̄σ(c)(W ).

4.2.
Now let us consider K. By definition, W ⊂ NGL(h)(K); therefore, elements

of W act as isomorphisms between the various rational Cherednik algebras
associated to K. Moreover, if we once again make the assumption that
the parameter c is W -equivariant, then the elements of W actually define
automorphisms of Ht,c(K). These induce automorphisms of H̄c(K) and
H̃c(K). Let M be a module for one of the three algebras CK,H̄c(K), or
H̃c(K). Then σM is also a module for that algebra, where M = σM as
vector spaces, and if a is an element of the algebra and m ∈ M , then a ·σ m =
σ−1(a) · m. The following lemma is standard.
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Lemma 4.2. Let λ be a K-module, and let σ ∈ W . Then σL(λ) ∼= L(σλ)
and σL̃(λ) ∼= L̃(σλ).

4.3. Clifford theory
We now define an action of Cd on H̃c(K). For η ∈ Cd, choose a lift σ of

η in W , and let λ ∈ Irr(K). Define

η · λ = σλ, η · L̃(λ) = σL̃(λ).

Note that the action of Cd is only well defined up to isomorphism; therefore,
Cd can be considered as acting on the isomorphism classes of the objects in
H̃c(K)-mod. Given μ ∈ Irr(K), the stabilizer subgroup of Cd with respect to
μ will be denoted Cμ. Let C∨

d = Homgp(Cd,C
∗) be the group of characters

of Cd. There is an action of C∨
d on the isomorphism classes of the objects in

H̄c(W )-mod. First let us define an action of C∨
d on Irr(W ): δ · λ = λ ⊗ δ, for

δ ∈ C∨
d and λ ∈ Irr(W ). The stabilizer subgroup of C∨

d with respect to λ will
be denoted C∨

λ . We choose coset representatives w1, . . . ,wd of Cd in W ; then
Lemma 3.4 implies that H̄c(W ) =

⊕
i H̃c(K)wi. Given an H̄c(W )-module

M , we define δ · M = M ⊗ δ with action

hwi · (m ⊗ δ) = δ(Kwi)(hwi · m) ⊗ δ.

This action does not depend on the choice of coset representatives, and one
can define δ as a functor on H̄c(W )-mod, though we will not require this
level of generality.

4.4.
Let ResWK and IndW

K be the induction and restriction functors CK-mod �
CW -mod. Then Clifford’s theorem allows one to compare CK- and CW -
modules via the induction and restriction functors (see [CR, Chapter 7]
for details). When the quotient group is cyclic, it is possible to deduce the
following result (the proof of which can be found in [Ste, Proposition 6.1]).

Proposition 4.4. Fix λ ∈ Irr(W ), and write ResWK λ = μ1 ⊕ · · · ⊕ μk,
where each μi is nonzero and irreducible. Then

(1) Cμi = (C∨
d /C∨

λ )∨ ⊂ Cd, hence |Cμi | · |C∨
λ | = d,

(2) Cd acts transitively on the set {μ1, . . . , μk },
(3) the μi are pairwise nonisomorphic,
(4) IndW

K μi =
⊕

δ∈C∨
d /C∨

λ
δ · λ.
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4.5.
To relate the action of Cd on H̃c(K)-mod and C∨

d on H̄c(W )-mod, let us
introduce the semisimple algebras

AW := H̄c(W )/ rad H̄c(W ) and AK := H̃c(K)/ rad H̃c(K).

Note that AK ⊂ AW and that there are natural induction and restriction
functors, IndAW

AK
and ResAW

AK
. The functors

EW : CW -mod → AW -mod, EW (λ) := AW ⊗H̄c(W ) H̄c(W ) ⊗C[h∗]coW �W λ

EK : CK-mod → AK-mod, EK(μ) := AK ⊗
H̃c(K)

H̃c(K) ⊗C[h∗]coW �K μ

are equivalences of categories with EW (λ) = L(λ) and EK(μ) = L̃(μ) for
λ ∈ Irr(W ) and μ ∈ Irr(K).

Lemma 4.5. The following diagram commutes up to natural equivalences:
(3)

CW -mod
EW

ResW
K

AW -mod

Res
AW
AK

CK-mod
EK

IndW
K

AK-mod

Ind
AW
AK

Proof. Let us write Irr(W ) = {λ1, . . . , λk }, Irr(K) = {μ1, . . . , μl}, and
aij ∈ N such that ResWK λi =

⊕
j μ

⊕aij

j . We begin by showing that the func-
tors EW ◦ IndW

K and IndAW
AK

◦EK are equivalent. The fact that CW =
⊕

i λi ⊗
λ∗

i as a CW -CW -bimodule implies that EW (CW ) =
⊕

i L(λi) ⊗ λ∗
i as an

AW -CW -bimodule. Similarly, EK(CK) =
⊕

j L̃(μj) ⊗ μ∗
j as an AK -CK-

bimodule. Frobenius reciprocity implies that

EW ◦ IndW
K CK �

⊕
ij

L(λi) ⊗ (μ∗
j )

⊕aij

as an AW -CK-bimodule. The isomorphism H̄c(W ) ⊗
H̃c(K)

Δ̃(μj) �
Δ(IndW

K μj) implies that

IndAW
AK

L̃(μj) �
⊕

i

L(λi)⊕aij ,
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and thus
IndAW

AK
◦EK(CK) �

⊕
ij

L(λi) ⊗ (μ∗
j )

⊕aij

as an AW -CK-bimodule. Since the functors EW ◦ IndW
K and IndAW

AK
◦EK

are exact, Watts’ theorem (see [Rot, Theorem 5.45]) says that EW ◦ IndW
K

is naturally isomorphic to EW ◦ IndW
K (CK) ⊗CK − and that IndAW

AK
◦EK is

naturally isomorphic to IndAW
AK

◦EK(CK) ⊗CK −. The required equivalence
now follows from the general fact that if A1 and A2 are algebras and if
B,C are isomorphic A1-A2-bimodules, then fixing an isomorphism B → C

defines an equivalence

B ⊗A2 − ∼−→ C ⊗A2 − : A1-mod −→ A2-mod.

The fact that the functors EK ◦ ResAW
AK

and ResAW
AK

◦ EW are equivalent
follows from the facts that EW ◦ IndW

K and IndAW
AK

◦EK are equivalent,
(IndW

K ,ResWK ) and (IndAW
AK

,ResAW
AK

) are pairs of adjoint functors, and EK

and EW are equivalences of categories.

4.6.
The functors EW and EK behave well with respect to the groups C∨

d

and Cd. More precisely, we have the following.

Lemma 4.6. Let δ ∈ C∨
d , let g ∈ Cd, let λ ∈ CW -mod, and let μ ∈

CK-mod; then

EW (δ · λ) � δ · EW (λ) and EK(g · μ) � g · EK(μ).

Proof. We prove that EW (δ · λ) = δ · EW (λ), the argument for EK being
similar. Consider the space 1 ⊗ λ ⊗ δ ⊂ δ · Δ(λ). For h ⊂ C[h∗]coW ⊂ H̄c(W ),
we have h · (1 ⊗ λ ⊗ δ) = 0; thus, there is a nonzero map Δ(δ · λ) → δ · Δ(λ).
The space 1 ⊗ λ ⊗ δ generates δ · Δ(λ); therefore, the map is an isomorphism.
The head of Δ(δ · λ) is EW (δ · λ), and the head of δ · Δ(λ) is δ · EW (λ). This
proves the result.

4.7.
Combining Proposition 4.4, the commutativity of diagram (3), and Lem-

ma 4.6, we can conclude the following.

Proposition 4.7. Fix λ ∈ Irr(W ), and write ResAW
AK

L(λ) = L̃(μ1) ⊕ · · · ⊕
L̃(μk), where each L̃(μi) is nonzero, irreducible. Then
(1) CL̃(μi)

= Cμi and C∨
L(λ) = C∨

λ ,
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(2) CL̃(μi)
= (C∨

d /C∨
L(λ))

∨ ⊂ Cd, hence |CL̃(μi)
| · |C∨

L(λ)| = d,

(3) Cd acts transitively on the set {L̃(μ1), . . . , L̃(μk)},
(4) the L̃(μi) are pairwise nonisomorphic,
(5) IndAW

AK
L̃(μi) =

⊕
δ∈C∨

d /C∨
L(λ)

δ · L(λ).

4.8.
Since C∨

d acts on the isomorphism classes of objects in H̄c(W )-mod and
Cd acts on the isomorphism classes of objects in H̃c(K)-mod, these groups
also permute the blocks of the corresponding algebras. Hence, there is an
action of C∨

d on the set CMc(W ) and an action of the group Cd on the block
partition of Irr(K) with respect to H̃c(K).

Lemma 4.8. The action of C∨
d on CMc(W ) is trivial since each partition

in CMc(W ) is a union of C∨
d orbits.

Proof. Let δ be a generator of C∨
d . Fix B to be a block of H̄c(W ), and let

λ ∈ Irr(W ) such that L(λ) is a simple module for B. Then we must show that
L(δ · λ) is also a simple module for B. Since the baby Verma modules Δ(λ)
and Δ(δ · λ) are indecomposable, it suffices to show that there is a nonzero
map Δ(δ · λ) → Δ(λ). In the notation of Lemma 3.4, C[U ∗]coCd is isomorphic
to the regular representation as a Cd-module. Let {f1, . . . , fn} be the set
of generators described in Lemma 3.4. Then there exist u1, . . . , un with
0 ≤ ui < ai such that g := fu1

1 · · · fun
n equals δ as characters of Cd. Moreover,

the image of g in C[h]coW is nonzero. The polynomial g is K-invariant;
therefore, it is central in H̃c(K). Since H̃c(K) ⊂ H̄c(W ), g commutes with
the elements h ⊂ H̄c(W ). Therefore, the required map exists and is uniquely
defined by 1 ⊗ δ · λ

∼−→ g ⊗ λ.

4.9. Twisted symmetric algebras
We will show that H̄c(W ) is an example of a twisted symmetric algebra

with respect to the group Cd. We follow the exposition given in [CH3, Sec-
tion 1] (see also [CH2]). Although we do not use the properties of H̄c(W )
derived from the fact that it is a symmetric algebra, we recall the relevant
definitions for completeness. Let A be a finite-dimensional C-algebra.

Definition 4.9. A trace function on A is a linear map t : A → C such
that t(ab) = t(ba) for all a, b ∈ A. It is called a symmetrizing form on A, and
A itself is said to be a symmetric algebra if the morphism

t̂ : A → HomC(A,C), a �→
(
t̂(a) : b �→ t(ab)

)
is an isomorphism of (A,A)-bimodules.
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Proposition 4.9 ([BGS, Corollary 3.7]). The restricted rational Chered-
nik algebra H̄c(W ) is a symmetric algebra.

4.10.
Let A be a symmetric algebra with form t, and let B be a subalgebra of

A. Then B is said to be a symmetric subalgebra of A if the restriction of t

to B is a symmetrizing form for B and A is free as a left B-module.

Lemma 4.10. The algebra H̃c(K) is a symmetric subalgebra of H̄c(W ).

Proof. If w1, . . . ,wd are left coset representatives of K in W , then the
PBW property (2) implies that H̄c(W ) is a free left H̃c(K)-module with
basis w1, . . . ,wd. The fact that the restriction of t to H̃c(K) is symmetrizing
is clear from the proof of [BGS, Lemma 3.5].

Definition 4.10. Following [CH3, Definition 1.10], we say that the sym-
metric algebra (A, t) is a twisted symmetric algebra of a finite group G over
the subalgebra B if B is a symmetric subalgebra of A and there is a family
of vector subspaces {Ag | g ∈ G} of A such that the following conditions
hold:

(1) A =
⊕

g∈G Ag,

(2) AgAh = Agh for all g,h ∈ G,
(3) A1 = B,
(4) t(Ag) = 0 for all g ∈ G,g �= 1,
(5) Ag ∩ A× �= ∅ for all g ∈ G (here A× are the units of A).

Proposition 4.10. The symmetric algebra H̄c(W ) is a twisted symmet-
ric group algebra of the group Cd over the subalgebra H̃c(K).

Proof. As in Lemma 4.10, let w1, . . . ,wd be left coset representatives of K

in W , and assume that Cd = {g1, . . . , gd} such that Kwi = gi in W/K = Cd.
Then H̄c(W )gi := H̃c(K) · wi. Conditions (1), (3), and (5) are clear. Since
conjugation by wi defines an automorphism of H̃c(K), condition (2) is also
clear. Finally, condition (4) follows from the definition of the symmetrizing
form Φ given in [BGS, Section 3.5].

4.11.
We are now in a situation where we can apply [CH2, Proposition 2.3.18].

Theorem 4.11. For S ⊂ Irr(W ), let Γ(S) be the set of all μ ∈ Irr(K)
occurring as a summand of ResWK λ for some λ ∈ S. Let P ∈ CMc(W ). Then
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there exists Q ∈ CMc(K) such that Γ(P ) = Cd · Q. This implies that there
is a bijection

CMc(W ) 1:1←→ CMc(K)/Cd.

Proof. Proposition 3.3 tells us that {blocks of H̃c(K)} = CMc(K). This
identification is Cd-equivariant. Therefore, it suffices to show that theorem
holds but with CMc(K) replaced by {blocks of H̃c(K)}. In [CH2], Chlou-
veraki makes use of the existence of a field extension of the base field of the
twisted symmetric algebra A such that the extended symmetric algebra is
split-semisimple. This fact is used to prove [CH2, Proposition 2.3.15]. Such
an extension does not exist for H̄c(W ), but Proposition 4.7 is our substi-
tute result. Now [CH2, Proposition 2.3.18] is applicable, with A = H̄c(W )
and Ā = H̃c(K) since its proof does not explicitly rely on the existence of
a splitting field extension. This result says that the rule C∨

d · P �→ Γ(C∨
d · P )

defines a bijection between the set of C∨
d -orbits in CMc(W ) and the Cd-

orbits in {blocks of H̃c(K)}. However, Lemma 4.8 says that the action of
C∨

d on CMc(W ) is trivial.

4.12.
Let us note a particular situation where we can give a more precise result.

Lemma 4.12. Let λ ∈ Irr(W ) such that {λ} ∈ CMc(W ). Then ResWK λ =⊕d
i=1 μi, μi �∼= μj for i �= j and {μi} ∈ CMc(K) for 1 ≤ i ≤ d.

Proof. Again, since Proposition 3.3 tells us that {blocks of H̃c(K)} =
CMc(K), it suffices to show that the statement holds with CMc(K) replaced
by {blocks of H̃c(K)}. Proposition 4.4 tells us that ResWK λ =

⊕e
i=1 μi for

some e dividing d and μi �∼= μj for i �= j. Moreover, there exists g ∈ Cd

such that gμi = μj , and hence gL̃(μi) = L̃(μj). In particular, dim L̃(μi) =
dim L̃(μj) = r for all i, j and some r ≤ |K|. It is shown in [G1, Section 5.3]
that dimL(λ) = |W | if and only if {λ} is a partition of CMc(W ). Propo-
sition 4.7 says that ResAW

AK
L(λ) =

⊕e
i=1 L̃(μi). Comparing the dimension of

both sides gives
|W | = e · r ≤ d · |K| = |W |.

Thus, e = d and r = |K|. Again, by [G1, Section 5.3], dim L̃(μi) = |K| implies
that {μi} is a block of H̃c(K).

Remark 4.12. In this article we focus on the particular case of W =
G(m,1, n) and K = G(m,d,n) (details are given in Section 5). However,
we believe that it is advantageous to present Theorem 4.11 in the level of



THE CALOGERO-MOSER PARTITION FOR G(m, d, n) 59

generality that we have done here since there are many examples among the
34 exceptional irreducible complex reflection groups of pairs (W,K). There-
fore, in order to calculate the Calogero-Moser partition for all exceptional
groups, it would suffice to consider only certain groups. We refer the reader
to [CH2, Appendix] for a list of many such pairs (W,K).

§5. The imprimitive groups G(m,d,n)

5.1.
The irreducible complex reflection groups are divided into two classes: the

primitive complex reflection groups and the imprimitive complex reflection
groups. The groups were classified by Shephard and Todd [ST]. There are 34
primitive complex reflection groups, which in the classification of [ST] are
labeled G4, . . . ,G37. They are also known as the exceptional complex reflec-
tion groups. In this section we will consider instead the imprimitive com-
plex reflection groups. These belong to one infinite family G(m,d,n), where
m,d,n ∈ N and d divides m. Let Sn be the symmetric group on n elements,
considered as the group of all n × n permutation matrices. Let A(m,d,n)
be the group of all diagonal matrices whose diagonal entries are powers of a
certain (fixed) mth root of unity and whose determinant is an (m/d)th root
of unity. The group Sn normalizes A(m,d,n), and G(m,d,n) is defined to
be the semidirect product of A(m,d,n) by Sn. Note that G(m,1, n) is the
wreath product group Cm � Sn. Fix p = m/d.

5.2. The conjugacy classes of reflections
Fix ζ a primitive mth root of unity. Let s(i,j) ∈ Sn denote the transpo-

sition swapping i and j, and let εk
i be the matrix in A(m,1, n) which has

ones all along the diagonal except in the ith position where its entry is ζk.
The conjugacy classes of reflections in G(m,1, n) are

R = {s(i,j)ε
k
i ε

−k
j : 1 ≤ i �= j ≤ n,0 ≤ k ≤ m − 1},

Si = {εi
j : 1 ≤ j ≤ n}1≤i≤m−1.

The G(m,1, n)-conjugacy classes of reflections in G(m,d,n) are

R = {s(i,j)ε
k
i ε

−k
j : 1 ≤ i �= j ≤ n,0 ≤ k ≤ m − 1},

Sid = {εid
j : 1 ≤ j ≤ n}1≤i≤p−1.

The following is an application of [Re, Theorem 3].
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Proposition 5.2. Let n > 2 or n = 2, and let d be odd; then the G(m,1,
n)-conjugacy classes of reflections in G(m,d,n) coincide with the G(m,d,n)-
conjugacy classes of reflections in G(m,d,n). When n = 2 and d is even,
the G(m,d,2)-conjugacy classes of reflections in G(m,d,2) are

R1 = {s(1,2)ε
k
i ε

−k
j : 0 ≤ k ≤ m − 1, k even},

R2 = {s(1,2)ε
k
i ε

−k
j : 0 ≤ k ≤ m − 1, k odd},

and

Sid = {εid
j : 1 ≤ j ≤ n}1≤i≤p−1.

5.3.
The group G(m,d,n) is a normal subgroup of G(m,1, n) of index d, and

the quotient group is the cyclic group Cd. Therefore, we are in the situation
considered in the previous sections. If c is a G(m,d,n)-conjugate invariant
function on the set of reflections of that group, then, provided that n �= 2
or n = 2 and d is odd, c extends by zero to a G(m,1, n)-conjugate invariant
function on the set of reflections of G(m,1, n). If n = 2 and d is even, we
are restricted to considering c such that c(R1) = c(R2). The group Cd =
〈εp

1〉 is a cyclic subgroup of G(m,1, n) and normalizes G(m,d,n). If d is
coprime to p, then G(m,1, n) = G(m,d,n) � Cd; an important example of
this behavior is G(m,m,n) � G(m,1, n). In such situations there exists an
algebra isomorphism

Ht,c

(
G(m,1, n)

) ∼= Ht,c

(
G(m,d,n)

)
� Cd.

A specific example of this is Ht,(c,0)(Bn) ∼= Ht,c(Dn)�C2, where Bn and Dn

are the Weyl groups of type B and D, respectively. (They correspond to
G(2,1, n) and G(2,2, n).)

5.4. Representations of G(m,d,n)
We begin by giving an explicit description of the simple G(m,1, n)-

modules. This will allow us to give a combinatorial description of the action
of the groups Cd and C∨

d as defined in Section 4.3. Recall that a partition
of n is a sequence of positive integers λ = (λ1 ≥ λ2 ≥ · · · ≥ λk > 0) such
that n = |λ| :=

∑k
i=1 λk. We call k the length of λ. The simple Sn-modules

are parameterized by partitions of n. Let Vλ denote the simple Sn-module
labeled by the partition λ. The simple Cm-modules will be denoted C · ωi
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(or simply ωi), 0 ≤ i < m. If Cm = 〈ε〉, then ε · ωi = ζiωi. (We may think
of Cm ⊂ G(m,1, n) such that ε = ε1.) Now let U be any Cm-module, and
let V be an Sn-module. The wreath product U � V is the G(m,1, n)-module,
which as a vector space is U ⊗n ⊗ V and whose module structure is uniquely
defined by

εi · (u1 ⊗ · · · ⊗ un ⊗ v) = u1 ⊗ · · · ⊗ ε · ui ⊗ · · · ⊗ un ⊗ v,

and for σ ∈ Sn,

σ · (u1 ⊗ · · · ⊗ un ⊗ v) = uσ−1(1) ⊗ · · · ⊗ uσ−1(n) ⊗ σ · v.

If U and V are simple modules, then U � V is a simple G(m,1, n)-module.
However, not every simple G(m,1, n)-module can be written in this way. A
complete set of simple modules was originally constructed by Specht [Sp].
The precise result is stated below, and a proof can be found in [JK, Theorem
4.3.34]. An m-multipartition λ of n is an ordered m-tuple of partitions
(λ0, . . . , λm−1) such that |λ0| + · · · + |λm−1| = n. Let P (m,n) denote the set
of all m-multipartitions of n. To each m-tuple n0 + · · · +nm−1 = n there is a
corresponding Young subgroup G(n) = Cm � (Sn0 × · · · × Snm−1) of G(m,1, n).

Theorem 5.4. To each λ in P (m,n) we can associate the G(m,1, n)-
module

Vλ := IndG(m,1,n)
G(n)

(ω0 � Vλ0) ⊗ · · · ⊗ (ωm−1 � Vλm−1),

where G(n) is the Young subgroup corresponding to the m-tuple |λ0| + · · · +
|λm−1| = n. Each Vλ is simple, Vλ �� Vμ for λ �= μ, and every simple G(m,1,
n)-module is isomorphic to Vλ for some λ.

5.5.
Note that in the case ni = 0, the module ωi � Vλi should be regarded as

the 1-dimensional trivial module. An element of G(m,1, n) can be thought
of as a permutation matrix but with the unique 1 in each row replaced by
an element of Cm. The rule that takes each such matrix to the product of
its nonzero entries defines a character δ′ : G(m,1, n) → C∗. (This is not the
determinant of the matrix.) Fix δ := (δ′)p. Then C∨

d = 〈δ〉, and it follows
from Section 4.3 that (ωi � V ) ⊗ δ � ωi+p � V . If we define the action of C∨

d

on λ by

δ · (λ0, . . . , λm−1) = (λm−p, λm+1−p, . . . , λm−2, λm−1, λ0, λ1, . . . , λm−p−1),
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then Theorem 5.4 implies that δ · Vλ = Vδ·λ. We denote the orbit C∨
d · λ by [λ].

Since (C∨
d /C∨

λ )∨ ⊂ Cd is the stabilizer Cμ of μ, an irreducible summand of

Res
G(m,1,n)
G(m,d,n)λ, we see by Proposition 4.4 that the set of all irreducible sum-

mands of Res
G(m,1,n)
G(m,d,n)λ is parameterized by elements of the quotient Cd/Cμ.

This quotient can be identified with C∨
λ ; hence, irreducible representations of

G(m,d,n) are parameterized by distinct pairs ([λ], ε), where ε ∈ C∨
λ . If we fix

Cd = 〈εp
1〉 and define the bijection Cd ↔ C∨

d by (εp
1)

i ↔ δi, then Cd/Cμ ↔ C∨
λ

and the action of Cd on pairs ([λ], ε) is given by

η · ([λ], ε) = ([λ], η · ε) where (η · ε)(ν) = ε(ην), for η, ν ∈ Cd.

§6. Combinatorics

6.1.
In this section we apply Theorem 4.11 to the combinatorial description of

the partition CMc(G(m,1, n)) given in [GM] and deduce a similar descrip-
tion of the partition CMc(G(m,d,n)). First we must introduce some com-
binatorial objects.

6.2. Young diagrams and β-numbers
Let λ be a partition of n of length k. The Young diagram of λ is defined

to be the subset Y (λ) := {(a, b) ∈ Z2 | 1 ≤ a ≤ k,1 ≤ b ≤ λa} of Z2. Each box
in the diagram is called a node, and the content of a node (a, b) is defined to
be the integer cont(a, b) := b − a. The Young diagram should be visualized
as a stack of boxes, justified to the left; for example, the partition (3,2,2,1)
with its content is

−2

−1 0 1

0 1 2 3

6.3. Residues
Given a partition λ, we define the residue of λ to be the Laurent poly-

nomial in Z[x±1] given by

Resλ(x) :=
∑

(a,b)∈Y (λ)

xcont(a,b).

For r ∈ Z, the r-shifted residue of λ is defined to be Resr
λ(x) := xr Resλ(x).

Let λ ∈ P (m,n), and fix r ∈ Zm. Then the r-shifted residue of λ is defined
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to be

Resrλ(x) :=
m−1∑
i=0

Resri

λi(x).

6.4.
In order to use the combinatorics described in [GM] and [M], we must

change the basis of our parameter space. Recall that we have labeled the
conjugacy classes of complex reflections in G(m,1, n) as R and Si. We fix
c(R) = k and c(Si) = ci. The parameters of the rational Cherednik algebra
Hc(G(m,1, n)) as used in [GM] are h = (h,H0, . . . ,Hm−1). We wish to find
an expression for these parameters in terms of k and c1, . . . , cm−1. For the
remainder of this section we make the assumption that k �= 0. Without
loss of generality, k = −1. The parameter H0 is chosen so that H0 + H1 +
· · · + Hm−1 = 0. Recall that ζ is a primitive mth root of unity. By [G2,
Section 2.7], we know that h = k and

ci =
m−1∑
j=0

ζ−ijHj .

Noting that
m−1∑
i=1

ζ−i(r+j) =

{
m − 1 if r + j ≡ 0modm

−1 otherwise,

we have, for 1 ≤ r ≤ m − 1,

ζ−rc1 + ζ−2rc2 + · · · + ζ−(m−1)rcm−1 =
m−1∑
i=1

ζ−ri
m−1∑
j=0

ζ−ijHj

=
m−1∑
j=0

Hj

m−1∑
i=1

ζ−i(r+j)

= (m − 1)Hm−r −
m−1∑
j=0

j 
=m−r

Hj

= mHm−r.

Thus, for 1 ≤ r ≤ m − 1,

Hr =
1
m

m−1∑
i=1

ζ−i(m−r)ci =
1
m

m−1∑
i=1

ζirci.
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6.5. The Calogero-Moser partition for Cm � Sn

The results in [GM] and [M] are valid only for rational values of h. There-
fore, for the remainder of this section, we restrict to those parameters c for
G(m,1, n) such that h = (−1,H0,H1, . . . ,Hm−1) ∈ Qm+1. Choose e ∈ N such
that eHi ∈ Z for all 0 ≤ i ≤ m − 1, and fix

s = (0, eH1, eH1 + eH2, . . . , eH1 + · · · + eHm−1) ∈ Zm.

Combining [GM, Theorem 2.5] with the wonderful, but difficult, combina-
torial result of [M, Theorem 3.13] gives the following.

Theorem 6.5. The multipartitions λ,μ ∈ P (m,n) belong to the same
partition of CMc(G(m,1, n)) if and only if

Ressλ(xe) = Ressμ(xe).

6.6.
The G(m,1, n)-conjugacy classes of G(m,d,n) are R and Sid, where 1 ≤

i ≤ p − 1. Thus, a parameter c for G(m,1, n) is an extension by zero of
a parameter for G(m,d,n) if and only if ci = 0 for all i �≡ 0modd. Let us
therefore assume that ci = 0 for i �≡ 0modd.

Lemma 6.6. We have ci = 0 for all i �≡ 0modd if and only if Hi+p = Hi

for all i.

Proof. First assume that ci = 0 for all i �≡ 0modd. Then

Hi+p =
1
m

p−1∑
r=1

ζdr(i+p)cdr =
1
m

p−1∑
r=1

ζdricdr = Hi.

Conversely, if Hi+p = Hi for all i, then

ci =
m−1∑
j=0

ζ−ijHj =
p−1∑
j=0

Hj

d−1∑
r=0

ζ−i(j+rp).

The result now follows from

d−1∑
r=0

ζ−i(j+rp) = ζ−ij
d−1∑
r=0

(ζ−ip)r =

{
dζ−ij if i ≡ 0modd

0 otherwise.
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6.7.
We will say that the parameter h = (−1,H0, . . . ,Hm−1) is p-cyclic if

Hi+p = Hi for all i. Let λ = (λ0, . . . , λm−1) be an m-multipartition of n.
We rewrite λ as λ = (λ0, . . . , λd−1), where λi = (λip, . . . , λ(i+1)p−1). Now the
action of C∨

d on λ as defined in Section 5.4 can be expressed as

δ · (λ0, . . . , λd−1) = (λd−1, λ0, . . . , λd−2).

An m-multipartition of n is called d-stuttering if λi = λj for all 0 ≤ i, j ≤
d − 1. The group C∨

d can be considered as a subgroup of Sd, the symmetric
group on d elements, acting on P (m,n) as

σ · (λ0, . . . , λd−1) = (λσ(0), . . . , λσ(d−1)).

Lemma 6.7. Let c be a parameter for G(m,1, n) such that h ∈ Qm+1 is
p-cyclic. Then the partitions of CMc(G(m,1, n)) consist of Sd-orbits since

Ressλ(xe) = Ressσ·λ(xe),

where λ ∈ P (m,n), σ ∈ Sd, and s is defined in Section 6.5.

Proof. If h is p-cyclic, then the corresponding parameter s has the form

s = (s′, . . . , s′) where s′ = (0, eH1, eH1 + eH2, . . . , eH1 + · · · + eHp−1),

and thus

Ressλ(xe) =
d−1∑
i=0

Ress
′

λi
(xe) ∀λ ∈ P (m,n).

Since the action of Sd simply reorders this sum, the result is clear.

6.8.
The following technical result will be needed later.

Lemma 6.8. Let h be a p-cyclic parameter, and choose λ ∈ P (m,n) to
be a non-d-stuttering m-multipartition of n. For each prime divisor q of d,
there exists an m-multipartition λ(q) of n such that λ and λ(q) belong to
the same partition of CMc(G(m,1, n)) and the order of the stabilizer of λ(q)
under the action of C∨

d is not divisible by q.
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Proof. We follow the argument given in [Ki, Lemma 3.5]. Since λ is not d-
stuttering, there exists an i > 0 such that λi �= λ0. If d = q there is nothing to
prove, so assume that d > q, and set l = d/q, l > 1. Let σ be the transposition
in Sd that swaps λi and λl−1 in λ. We set λ(q) = σ · λ. Then λ(q) is not
fixed by any of the generators of the unique subgroup of C∨

d of order q, and
hence the stabilizer subgroup of λ(q) has order coprime to q. Since λ and
λ(q) are in the same Sd-orbit, Lemma 6.7 says that they are in the same
partition of CMc(G(m,1, n)).

6.9.
We will also require the following result.

Lemma 6.9. Let c be a parameter for G(m,1, n) such that h ∈ Qm+1 is
p-cyclic, and choose λ ∈ P (m,n) to be d-stuttering. If {λ} is not a partition
of CMc(G(m,1, n)), then there exists a non-d-stuttering m-multipartition μ

that is in the same partition as λ.

Proof. Since {λ} is not a partition of CMc(G(m,1, n)), there must exist
an m-multipartition λ′ �= λ that is in the same partition as λ. If λ′ is not
d-stuttering, then we are done. Therefore, we assume that λ′ is d-stuttering.
As noted in the proof of Lemma 6.7, h being p-cyclic implies that

Ressμ(xe) =
d−1∑
i=0

Ress
′

μ
i
(xe) ∀μ ∈ P (m,n).

Hence, Ressλ(xe) = dRess
′

λ0
(xe) and Ressλ′ (xe) = dRess

′

(λ′)0
(xe). It follows from

Theorem 6.5 that
Ress

′
λ0

(xe) = Ress
′

(λ′)0
(xe).

Set μ = (λ0, (λ
′)0, λ0, . . . , λ0); it is a non-d-stuttering m-multipartition.

Again by Theorem 6.5, Ressλ(xe) = Ressμ(xe) implies that λ and μ belong to
the same partition of CMc(G(m,1, n)).

6.10. The main result
Recall that for P ∈ CMc(W ), Γ(P ) was defined to be the set of all

μ ∈ Irr(K) occurring as a summand of ResKW λ for each λ ∈ P . In the case
W = G(m,1, n) and K = G(m,d,n), Γ is given combinatorially by Γ(P ) =
{([λ], ε) | λ ∈ P , ε ∈ C∨

λ }.

Theorem 6.10. Let c : S(G(m,d,n)) → C be a G(m,1, n)-equivariant
function such that k �= 0 and h ∈ Qm+1. The CMc(G(m,d,n)) partition of
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Irr(G(m,d,n)) is described as follows. Let Q be a partition in CMc(G(m,

1, n)).
(1) If λ is a d-stuttering m-multipartition such that Q = {λ}, then the sets

{([λ], ε)} where ε ∈ C∨
d are partitions of CMc(G(m,d,n)).

(2) Otherwise, Γ(Q) is a CMc(G(m,d,n)) partition of Irr(G(m,d,n)).

Proof. Rescaling if necessary, we may assume that k = −1. It is clear that
the sets described in (1) and (2) of the theorem define a partition of the
set Irr(G(m,d,n)). Therefore, we just have to show that the sets describe
the blocks of H̄c(G(m,d,n)). Proposition 3.3 says that it is sufficient to
prove that (1) and (2) describe the equivalence classes of Irr(G(m,d,n))
with respect to the blocks of H̃c(G(m,d,n)). Lemma 4.12 shows that the
sets described in (1) are indeed blocks of H̃c(G(m,d,n)). So let us assume
that Q is not of the form described in (1). The group Cd acts on the set
Γ(Q), and Theorem 4.11 says that there exists a block B of H̃c(G(m,d,n))
such that Cd · B = Γ(Q). We wish to show that Cd · B = B. The fact that
g · L̃ ∈ g · B for L̃ ∈ B and g ∈ Cd implies that⋃

L̃∈B

StabCd
L̃ ⊆ StabCd

B.

To show that StabCd
B = Cd, we will show that for every prime q dividing d

there exists an L̃ ∈ B such that the highest power of q dividing d also divides
| StabCd

L̃(μ)|. This will imply that Cd · B = B, that is, that Γ(Q) = B. Let
L(λ) ∈ Q, and let L̃(μ) be a summand of Res

AG(m,1,n)

AG(m,d,n)
L(λ); then L̃(μ) ∈ g · B

for some g ∈ Cd. This means that g−1 · L̃(μ) ∈ B is also a summand of
L(λ). Thus, Res

AG(m,1,n)

AG(m,d,n)
L(λ) contains a summand that lives in B, for all

L(λ) ∈ Q. Since StabCd
L̃(μ) = StabCd

L̃(μ′) for any two summands L̃(μ)
and L̃(μ′) of Res

AG(m,1,n)

AG(m,d,n)
L(λ), it will suffice to show that, for every prime q

dividing d, there exists an L(λ) ∈ Q such that the highest power of q dividing
d also divides | StabCd

L̃(μ)| for some summand L̃(μ) of Res
AG(m,1,n)

AG(m,d,n)
L(λ).

Proposition 4.7(1) says that

| StabCd
L̃(μ)| · | StabC∨

d
L(λ)| = d.

Therefore, it suffices to show that we can find L(λ) ∈ Q such that q does not
divide | StabC∨

d
L(λ)|. Since Q �= {λ} for some d-stuttering multipartition λ,

Lemma 6.9 says that there exists a non-d-stuttering multipartition in Q.
Lemma 6.8 now says that the module L(λ) we require exists in Q.
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Corollary 6.10. Let c : S(G(m,d,n)) → C be a G(m,1, n)-equivariant
function such that k = −1 and h ∈ Qm+1, extended to a function c : S(G(m,1,
n)) → C, and define s as in Section 6.5. Choose ([λ], ε), ([μ], η) ∈ Irr(G(m,

d,n)); then
• if [λ] �= [μ], then ([λ], ε) and ([μ], η) are in the same partition of CMc(G(m,

d,n)) if and only if
Ressλ(xe) = Ressμ(xe);

• if λ = μ is a d-stuttering partition and Ressλ(xe) �= Ressν(x
e) for all λ �= ν ∈

P (m,n), then ([λ], ε) and ([λ], η) are in the same partition of CMc(G(m,

d,n)) if and only if ε = η;
• otherwise, ([λ], ε) and ([λ], η) are in the same partition of CMc(G(m,

d,n)).

6.11.
It was shown by the author in [B] that the partition CMc(G(m,d,n)) is

never trivial, even for generic values of c. Here we describe CMc(G(m,d,n))
for generic c.

Lemma 6.11. Let c be a generic parameter for Hc(G(m,d,n)) such that
k �= 0 and h ∈ Qm+1. Choose ([λ], ε), ([μ], η) ∈ Irr(G(m,d,n)); then
• if λ is a d-stuttering partition, then {([λ], ε)} is a partition of CMc(G(m,

d,n));
• otherwise, ([λ], ε) and ([μ], η) are in the same partition of CMc(G(m,d,

n)) if and only if

(4)
d−1∑
i=0

Resλj+pi(xe) =
d−1∑
i=0

Resμj+pi(xe) ∀0 ≤ j ≤ p − 1.

Note that the expressions in (4) are independent of the choice of represen-
tatives λ ∈ [λ] and μ ∈ [μ].

Proof. Since h is cyclic, we note once again that the vector s as defined
in Section 6.5 has the form

s = (s′, . . . , s′) where s′ = (0, eH1, eH1 + eH2, . . . , eH1 + · · · + eHp−1).

Therefore,

Ressλ(xe) =
p−1∑
j=0

xesj

(d−1∑
i=0

Resλj+pi(xe)
)
,
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and thus the genericity of c implies that

Ressλ(xe) = Ressμ(xe) ⇔
d−1∑
i=0

Resλj+pi(xe) =
d−1∑
i=0

Resμj+pi(xe) ∀0 ≤ j ≤ p − 1.

If λ is d-stuttering, then
∑d−1

i=0 Resλj+pi(xe) = dResλj (xe), ∀0 ≤ j ≤ p − 1. It
can easily be shown that if

dResλj (xe) =
d−1∑
i=0

Resμj+pi(xe),

then μj+pi = λj for all i. Therefore, each d-stuttering partition forms a sin-
gleton partition in CMc(G(m,1, n)). Now Lemma 6.11 follows from Corol-
lary 6.10.

§7. Relation to Rouquier families

7.1. Generic Hecke algebras
In this section we show that Theorem 6.10 confirms Martino’s conjecture

when W = G(m,d,n). To each complex reflection group, it is possible to
associate a generic Hecke algebra. We recall the definition as given in [M]
(see also [BMR]). Denote by K the set of all hyperplanes in h that are the
fixed point sets of the complex reflections in W . The group W acts on K.
Given H ∈ K, the parabolic subgroup of W that fixes H pointwise is a rank
1 complex reflection group and thus isomorphic to the cyclic group Ce for
some e. Therefore, an orbit of hyperplanes C ∈ K corresponds to a conjugacy
class of rank 1 parabolic subgroups, all isomorphic to CeC . Let eC := |CeC |
be the order of these parabolic subgroups. For every d > 1, fix ηd = e2πi/d,
and let μd be the group of all dth roots of unity in C. If μ∞ is the group of
all roots of unity in C, then we choose K to be some finite field extension
of Q contained in Q(μ∞) such that K contains μeC for all C ∈ K/W . The
group of roots of unity in K is denoted μ(K), and the ring of integers in K

is ZK .

7.2.
Fix a point x0 ∈ hreg := h\

⋃
H∈ K H , and denote by x̄0 its image in hreg/W .

Let B denote the fundamental group Π1(hreg/W, x̄0). Let u = {(uC,j) : C ∈
K/W,0 ≤ j ≤ eC − 1} be a set of indeterminates, and denote by Z[u,u−1]
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the ring Z[u±1
C,j : C ∈ K/W,0 ≤ j ≤ eC − 1]. The generic Hecke algebra, HW ,

is the quotient of Z[u,u−1]B by the relations of the form

(s − uC,0)(s − uC,1) · · · (s − uC,eC −1),

where C ∈ K/W and s runs over the set of monodromy generators around
the images in hreg/W of the hyperplane orbit C. The following properties
are known to hold for all but finitely many complex reflection groups (it is
conjectured that they hold for all complex reflection groups). In particular,
they hold for the infinite series G(m,d,n).

• HW is a free Z[u,u−1]-module of rank |W |.
• HW has a symmetrizing form t : HW → Z[u,u−1] that coincides with the

standard symmetrizing form on ZKW after specializing uC,j to ηj
eC .

• Let v = {(vC,j) : C ∈ K/W,0 ≤ j ≤ eC − 1} be a set of indeterminates such
that uC,j = ηj

eC v
|μ(K)|

C,j . Then the K(v)-algebra K(v)HW is split semisim-
ple.

Note that Tits’s deformation theorem (see [GP, Theorem 7.2]) implies that
the specialization vC,j �→ 1 induces a bijection Irr(W ) ↔ IrrK(v)HW .

Remark 7.2. When W = G(m,1, n), the set K/W is {R, S }, where R is
the orbit of hyperplanes that define the reflections in the conjugacy class R

and where S is the orbit of hyperplanes defining the reflections in the con-
jugacy classes S0, . . . , Sm−1. Therefore, eR = 2 and eS = m. Similarly, when
W = G(m,d,n), n �= 2 or n = 2, and p is odd, the set K/W is {R, S } where
R is the orbit of hyperplanes that define the reflections in the conjugacy
class R and S is the orbit of hyperplanes defining the reflections in the con-
jugacy classes Sd, . . . , Sd(p−1). Therefore, eR = 2 and eS = p. However, when
W = G(m,d,2) with d even, the set K/W is {R1, R2, S }, where R1, R2 are
the orbits of the hyperplanes that define the reflections in the conjugacy
classes R1 and R2. Here eR1 = eR2 = 2 and eS = p.

7.3. Cyclotomic Hecke algebras
The cyclotomic Hecke algebras are certain specializations of the generic

Hecke algebra. Let y be an indeterminate.

Definition 7.3. A cyclotomic Hecke algebra is the ZK [y, y−1]-algebra
induced from Z[v,v−1]HW by an algebra homomorphism of the form

ZK [v,v−1] → ZK [y, y−1], vC,j �→ ynC,j ,
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where the tuple n := {(nC,j ∈ Z) : C ∈ K/W,0 ≤ j ≤ eC − 1} is chosen such
that the following property holds. Set x := y|μ(K)|, and let z be an indeter-
minate. Then the element of ZK [y, z] defined by

ΓC (y, z) =
eC −1∏
j=0

(z − ηj
eC ynC,j )

is required to be invariant under Gal(K(y)/K(x)) for all C ∈ K/W . In other
words, ΓC (y, z) is contained in ZK [x±1, z]. The cyclotomic Hecke algebra
corresponding to n is denoted HW (n).

The symmetric form t on HW induces, by extension of scalars, a sym-
metrizing form on K(y)HW (n), and this algebra is split semisimple by [CH2,
Proposition 4.3.4]. Therefore, Tits’s deformation theorem implies that we
have bijections

Irr(W ) ↔ IrrK(y)HW (n) ↔ K(v)HW .

7.4. Rouquier families
The Rouquier ring is defined to be R(y) = ZK [y, y−1, (yn − 1)−1 : n ∈ N].

Since HW is free of rank |W |, R(y)HW (n) ⊂ K(y)HW (n) is also free of
rank |W |. We define an equivalence relation on IrrK(y)HW (n) = Irr(W )
by saying that λ ∼ μ if and only if λ and μ belong to the same block of
R(y)HW (n). The equivalence classes of this relation are called Rouquier
families.

7.5.
Fix a parameter c for G(m,d,n) that extends to a parameter c for

G(m,1, n), translated into the form h = (h,H0, . . . ,Hm−1) as described in
Section 6.4. Again, we make the assumption that h = −1 and h ∈ Qm+1.
Choose e ∈ N such that eh and eHi ∈ Z for all 0 ≤ i ≤ m − 1. Then n =
(nR,0, nR,1, nS,0, . . . , nS,m−1) is fixed to be nR,0 = e,nR,1 = 0, and nS,j =
e
∑j

i=1 Hi for 0 ≤ j ≤ m − 1. From now on we fix K = Q(ηm) and ZK =
Z[ηm]. Recall the morphism Υ defined in Section 2.2.

Conjecture 7.5 (Martino [M, Conjecture 2.7]). Let c, h, and n be as
above.
(1) The partition of IrrG(m,d,n) into Rouquier families associated to

HG(m,d,n)(n) refines the CMc(G(m,d,n)) partition. For generic values
of c the partitions are equal.
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(2) Let q ∈ Υ−1(0), and let K(y)B1 ⊕ · · · ⊕ K(y)Bk be the sum of the cor-
responding Rouquier blocks. Then dim(C[Υ∗(0)q]) = dimK(y) K(y)B1 ⊕
· · · ⊕ K(y)Bk.

7.6.
The Rouquier families for G(m,1, n) are calculated by Chlouveraki [CH1]

using the idea of essential hyperplanes. The essential hyperplanes for G(m,1,
n) in Zm+1 are of the form (knR,0 + nS,i − nS,j = 0), for 0 ≤ i < j ≤ m − 1
and −m < k < m, and (nR,0 = 0).

Definition 7.6. Let n ∈ Zm+1.
• The hyperplane (knR,0 + nS,i − nS,j = 0) is said to be essential if there

exists a prime ideal p of Z[ηm] such that ηi
m − ηj

m ∈ p. The hyperplane
(nR,0 = 0) is always assumed to be essential.

• If n does not belong to any essential hyperplane, then n is said to be
generic.

• If n belongs to the essential hyperplane (knR,0 + nS,i − nS,j = 0) and n
does not belong to any other essential hyperplane, then n is said to be a
generic element of (knR,0 + nS,i − nS,j = 0).

7.7.
If n ∈ Zm+1 does not belong to any essential hyperplane, then the corre-

sponding Rouquier families are independent of the choice of n. Similarly, if n
is a generic element in some essential hyperplane, then the Rouquier families
for n are independent of the choice of n. A general element n ∈ Zm+1 will
belong to a collection of essential hyperplanes H1, . . . ,Hk = 0. It has been
shown by Chlouveraki [CH2] that Rouquier families have the property of
semicontinuity. This means that the partition of IrrG(m,1, n) into Rouquier
families for n is the finest partition of IrrG(m,1, n) that is refined by the
Rouquier family partition of IrrG(m,1, n) associated to each of the essential
hyperplanes Hi = 0. Therefore, if λ and μ are in the same Rouquier family
for some essential hyperplane Hi = 0, then they are in the same Rouquier
family for n.

Proposition 7.7 ([CH1, Proposition 3.15]). Let (nS,i − nS,j = 0) be an
essential hyperplane, and choose n to be a generic element of (nS,i − nS,j = 0).
Then λ,μ ∈ P (n,m) are in the same Rouquier family of R(y)HG(m,1,n)(n) if
and only if
(1) λa = μa for all a �= s, t and
(2) Res(λs,λt)(x) = Res(μs,μt)(x).
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Proof. The result of [CH1, Proposition 3.15] is stated in terms of weighted
content, but [BK, proposition 3.4] shows that we can reformulate the result
in terms of residues. The weighting is (0, k), which in our case becomes (0,0)
since k = 0.

Lemma 7.7. Let λ,μ ∈ P (m,n). We write λ ∼ μ if there exists 0 ≤ i ≤
p − 1 and 0 ≤ j < k ≤ d − 1 such that λa = μa for all a �= i + jp, i + kp and

Res(λi+jp,λi+kp)(x) = Res(μi+jp,μi+kp)(x).

Now choose n to be a generic parameter for HG(m,d,n). Then the partition
of IrrG(m,1, n) into Rouquier families for R(y)HG(m,1,n)(n) is the set of
equivalence classes in IrrG(m,1, n) under the transitive closure of ∼.

Proof. Since n is generic for HG(m,d,n), the parameter h satisfies Hi+p =
Hi for all i and no other linear relations. Therefore, it follows from Sec-
tion 7.5 that the only hyperplanes that might be essential for n (now con-
sidered a parameter for HG(m,1,n)) are of the form (nS,i+jp − nS,i+kp = 0)
for 0 ≤ i ≤ p − 1 and 0 ≤ j < k ≤ d − 1. However, not all of these hyperplanes
will be essential. Let us say that the m-multipartition λ is linked to the m-
multipartition μ if there exists an essential hyperplane (nS,i+jp − nS,i+kp =
0) containing n such that

Res(λi+jp,λi+kp)(x) = Res(μi+jp,μi+kp)(x).

Then, by Proposition 7.7 and the principal of semicontinuity, the Rouquier
families for R(y)HG(m,1,n)(n) are the set of equivalence classes in IrrG(m,1,
n) under the transitive closure of linked. Since λ linked to μ implies that
λ ∼ μ, the Rouquier families refine the partition defined by ∼. Therefore,
we must show that if λ ∼ μ (via i+ jp, i+ kp say), then there exists a chain
of m-multipartitions λ = λ1, . . . , λq = μ such that λα is linked to λα+1 for
all 1 ≤ α ≤ q − 1. For each 0 ≤ i ≤ p − 1 and 0 ≤ j ≤ d − 1, the result in
[CH3, Lemma 3.6] says that the multipartitions λ and (i, i + jp) · λ belong
to the same Rouquier family for R(y)HG(m,1,n)(n), where (i, i + jp) is the
transposition swapping the partitions λi and λi+jp. In particular, this result
(assuming that d > 1) shows that there exists some l �= 0 such that the
hyperplane (nS,i − nS,i+lp = 0) is essential. Applying the result in [CH3,
Lemma 3.6], we see that λ is in the same Rouquier family as

λ′ := (i, i + kp) · (i + lp, i + jp) · λ
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and that μ is in the same Rouquier family as

μ′ := (i, i + kp) · (i + lp, i + jp) · μ.

Now (λ′)a = (μ′)a for all a �= i, i + lp and

Res((λ′)i,λi+lp)(x) = Res((μ′)i,μi+lp)(x).

Since the hyperplane (nS,i − nS,i+lp = 0) is essential, this implies that λ′ is
linked to μ′, and there must be a chain from λ to μ as required.

7.8.
We will require the following combinatorial result. The proof uses the

representation theory of cyclotomic Hecke algebras; it would be interesting
to have a direct combinatorial proof.

Lemma 7.8. Let λ and μ be two m-multipartitions of n. Then Resλ(x) =
Resμ(x) if and only if there exists a sequence of multipartitions λ = λ(1), . . . ,
λ(k) = μ ∈ P (m,n) and s(i) �= t(i) ∈ {1, . . . ,m}, 1 < i ≤ k, such that

(1) λ(i − 1)a = λ(i)a for all a �= s(i), t(i); and
(2) Res(λ(i−1)s(i),λ(i−1)t(i))(x) = Res(λ(i−1)s(i),λ(i−1)t(i))(x), ∀1 < i ≤ k.

Proof. Let us fix n = (nR,0, nR,1, nS,0, . . . , nS,m−1) with nR,0 = 1, nR,1 =
0, and nS,i = 0 for all 0 ≤ i ≤ m − 1. Then Lemma 7.8 is the result (see
[CH1, Proposition 3.19]) for our special parameter n, noting once again
that [BK, proposition 3.4] allows us to rephrase [CH1, Proposition 3.19],
which is stated in terms of weighted content, in the language of residues.

7.9.
We can now confirm the first part of Martino’s conjecture for G(m,d,n).

Theorem 7.9. Let c : S(G(m,d,n)) → C be a G(m,1, n)-equivariant
function such that k = −1 and h ∈ Qm+1. Choose e ∈ N such that eh and
eHi ∈ Z for all 0 ≤ i ≤ m − 1. Fix nR,0 = e,nR,1 = 0, and fix nS,j = e

∑j
i=1 Hi

for 0 ≤ j ≤ m − 1. Then

(1) the partition of IrrG(m,d,n) into Rouquier families associated to
HG(m,d,n)(n) refines the CMc(G(m,d,n)) partition;

(2) the partition of IrrG(m,d,n) into Rouquier families associated to
HG(m,d,n)(n) equals the CMc(G(m,d,n)) partition for generic values
of the parameter c.
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Proof. It is shown in [CH3, Theorem 3.10] that if λ is a d-stuttering m-
multipartition of n such that {λ} is a Rouquier family for R(y)HG(m,1,n)(n),
then the sets {(λ, ε)}, ε ∈ C∨

d are Rouquier families for R(y)HG(m,1,n)(n).
This agrees with Theorem 6.10(1). The second part of [CH3, Theorem 3.10]
shows that if P is a Rouquier family for R(y)HG(m,1,n)(n) not of the type
just described, then in the notation of Theorem 4.11, Γ(P ) is a Rouquier
family for R(y)HG(m,d,n)(n). The result of [M, Corollary 3.13] shows that the
partition of IrrG(m,1, n) into Rouquier families associated to HG(m,1,n)(n)
refines the CMc(G(m,1, n)) partition. Therefore, there exists a CMc(G(m,1,
n))-partition Q such that P ⊆ Q. By Theorem 6.10(2), Γ(Q) is a CMc(G(m,

d,n))-partition. Thus, Γ(P ) ⊆ Γ(Q) implies that the partition of IrrG(m,d,

n) into Rouquier families refines the CMc(G(m,d,n)) partition.
Now let c be a generic parameter for the rational Cherednik algebra

associated to G(m,d,n). We think of c as a parameter for the rational
Cherednik algebra associated to G(m,1, n). Thus, it is a generic point of the
subspace defined by cj = 0 for all j �≡ 0modd. Correspondingly, n is a generic
point in the sublattice of Zm+1 defined by the equations nS,i+kp − nS,i+lp = 0
for 0 ≤ i ≤ p − 1 and 0 ≤ k < l ≤ d − 1. We wish to show that the Calogero-
Moser partition of IrrG(m,d,n) equals the partition of IrrG(m,d,n) into
Rouquier families. As explained in the previous paragraph, [CH3, Theorem
3.10] and Theorem 6.10 imply that it suffices to show that the Calogero-
Moser partition of IrrG(m,1, n) for c equals the partition of IrrG(m,1, n)
into Rouquier families for n. The proof of Lemma 6.11 shows that λ,μ ∈
P (m,n) are in the same Calogero-Moser partition of IrrG(m,1, n) if and
only if

d−1∑
j=0

Resλi+pj (xe) =
d−1∑
j=0

Resμi+pj (xe) ∀0 ≤ i ≤ p − 1.

Combining the results of Lemmas 7.7 and 7.8 shows that λ,μ ∈ P (m,n) are
in the same Rouquier family of R(y)HG(m,1,n)(n) if and only if the same
condition holds.
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