Translator Disclaimer
2007 Infinitesimal invariant and vector bundles
Gian Pietro Pirola, Cecilia Rizzi
Nagoya Math. J. 186: 95-118 (2007).

Abstract

We study the Saito-Ikeda infinitesimal invariant of the cycle defined by curves in their Jacobians using rank $k+1$ vector bundles. We give a criterion for which the higher cycle class map is not trivial. When $k = 2$, this turns out to be strictly linked to the Petri map for vector bundles. In this case we can improve a result of Ikeda: an explicit construction on a curve of genus $g \geq 10$ shows the existence of a non trivial element in the higher Griffiths group.

Citation

Download Citation

Gian Pietro Pirola. Cecilia Rizzi. "Infinitesimal invariant and vector bundles." Nagoya Math. J. 186 95 - 118, 2007.

Information

Published: 2007
First available in Project Euclid: 22 June 2007

zbMATH: 1134.14004
MathSciNet: MR2334366

Subjects:
Primary: 14C25
Secondary: 14C15, 14H40

Rights: Copyright © 2007 Editorial Board, Nagoya Mathematical Journal

JOURNAL ARTICLE
24 PAGES


SHARE
Vol.186 • 2007
Back to Top