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INFINITESIMAL INVARIANT AND VECTOR BUNDLES

GIAN PIETRO PIROLA and CECILIA RIZZI∗

Abstract. We study the Saito-Ikeda infinitesimal invariant of the cycle de-

fined by curves in their Jacobians using rank k + 1 vector bundles. We give

a criterion for which the higher cycle class map is not trivial. When k = 2,

this turns out to be strictly linked to the Petri map for vector bundles. In this

case we can improve a result of Ikeda: an explicit construction on a curve of

genus g ≥ 10 shows the existence of a non trivial element in the higher Griffiths

group.

Introduction

A curve in its jacobian defines a basic algebraic cycle which is one of

the most studied in algebraic geometry. In fact many geometric properties

of the curve are reflected by this cycle and Abel-Jacobi mappings, normal

functions and their infinitesimal invariant are the natural objects to obtain

informations on the curve.

The aim of this paper is to show that the higher infinitesimal invariant

associated to the basic cycle can be interpreted using vector bundle theory.

We show that the non-vanishing infinitesimal invariant is implied by the

injectivity of a natural map of vector bundles, usually called Petri map,

which is completely established only for line bundles on general curves but

it is studied also in case of rank n in the Brill-Noether theory and in the

study of moduli spaces of vector bundles (see for example [16], [4], [20]).

Let C be a smooth complete complex connected curve of genus g > 2.

The choice of a base point defines the Abel-Jacobi map C → J , where J

is the jacobian variety. The image of C in J is an algebraic cycle W (C) of

codimension g − 1. Let W (C)− be the image of W (C) under the involution
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Pavia and by a scholarship of Politecnico di Milano.



96 G. P. PIROLA AND C. RIZZI

j : J → J , j(u) = −u. Let

Z = W (C) − W (C)− ∈ CHg−1(J)

be the basic cycle associated to C. Clearly Z is homologically equivalent

to zero but, for a general curve C, the cycle W (C) is not algebraically

equivalent to W (C)− (see [5]).

This result was obtained by degeneration in [5] and by infinitesimal

deformations in [9] and in [6]. Consider a family of smooth curves f : C → S

over a smooth variety S of dimension n with a section of C over S. Let J

be the family of jacobians. The algebraic cycle W of J is defined as the

image of the morphism C → J . Then the basic cycle Z given by the

difference W − W− is an element in CHg−1(J ). The higher Abel-Jacobi

map associated to Z defines a “normal function” (see [15]). The Griffiths

infinitesimal invariant was introduced as a tool to study general normal

functions in the more general context of algebraic varieties (see also [14]

and [22]). The computation of the infinitesimal invariant in our case has

been carried out in [6].

The structure of algebraic cycle groups on an abelian variety is richer

than in the arbitrary case. In fact we can decompose W =
∑

ν W
ν ∈

CHg−1(J ) ⊗ Q, where Wν lies in CHg−1
ν (J ), that is, multiplication by

k ∈ Z acts on the cycle as k∗Wν = k2g−2−νWν (see [2]). Hence the cycle

Z can be written as
∑

i 2W
2i+1. It turns out that W2i+1 with i 6= 0 lies in

the kernel of the Abel-Jacobi map ([8], [11]).

In order to study the kernel of the Abel-Jacobi map, Saito in [19] in-

troduces higher normal functions and proceeds with the definition of higher

infinitesimal invariants. For this purpose, we recall two filtrations on the

Chow groups as in [18]. Let X be a smooth projective variety. The first

filtration F νCHk(X) corresponds to one of those conjectured by Bloch and

Beilinson in the theory of mixed motives [3]. It has the following basic

properties:

F 1CHk(X) = CHk(X)hom and F 2CHk(X) ⊂ Ker(AJkX ),

where AJkX denotes the higher Abel-Jacobi map. The second filtration,

ZlF
νCHk(X), is an ascending filtration of F νCHk(X) which generalizes

the group of algebraically trivial cycles on F νCHk(X).
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In our case, the algebraic cycle Wν lies in F νCHg−1(J ). The higher

infinitesimal invariant makes it possible to determine when W ν
s is trivial in

the higher Griffiths groups,

Griff g−1,ν(Js) = F νCHg−1(Js)/F
ν+1CHg−1(Js) + Z0F

νCHg−1(Js),

where Js is the fiber over a general point s ∈ S. Note that, for ν = 1, we

have the usual Griffiths group, that is, the quotient of cycles homologous to

zero modulo cycles algebraically equivalent to zero.

The theory of the higher infinitesimal invariant in the case of curves

in their Jacobians has been developed in [11]. In particular, for W ν ∈

F νCHg−1(J ), Ikeda rewrites the higher infinitesimal invariant as a linear

map

φν,1s (Wν) : V g−1,ν
s −→ C

for a general point s ∈ S, where V g−1,ν
s is the cohomology of the Koszul

complex

ν+1
∧

TS,s ⊗ H0(Ων+2
Js

) −→

ν
∧

TS,s ⊗ H1(Ων+1
Js

) −→

ν−1
∧

TS,s ⊗ H2(Ων
Js

).

The formula in Proposition (3.7) of [11] generalizes [6] using some par-

ticular maps called “adjunction maps”. Through the computation of the

infinitesimal invariant, in the case of special smooth plane curves, Ikeda

provides an example of a non torsion cycle Wν
s in the higher Griffiths group

Griff g−1,ν(Js).

In this paper, we study systematically the Saito-Ikeda infinitesimal in-

variant associated to cycles Wν using vector bundles techniques. Here we

give a brief sketch of our argument.

Consider the family of curves f : C → S. Denote by C = f−1(s) the

fiber over the generic point s ∈ S. The differential defines the following

exact sequence

(1) 0 −→ f ∗Ω1
S,s −→ Ω1

C|C −→ ωC −→ 0.

We can identify the conormal bundle f ∗Ω1
S,s with the rank n trivial vector

bundle T ∗
S,s ⊗ OC . Note that Ω1

C |C is a rank (n + 1) vector bundle with

canonical determinant. Let

n+1
∧

H0(Ω1
C |C) −→ H0(ωC)



98 G. P. PIROLA AND C. RIZZI

be the map given by the determinant.

Suppose that the Kodaira-Spencer map TS,s ⊗ H0(OC) → H1(TC) is

injective. Moreover, assume that there is a space U of dimension n + 1 in

the kernel of the coboundary map δ : H0(ωC) → T ∗
S,s ⊗ H1(OC) and set

W = ρ−1(U) where ρ : H0(Ω1
C |C) → H0(ωC). Consider the restriction of

the determinant map

(2) ∆S,s :

n+1
∧

W −→ H0(ωC).

We need to consider only the contribution of the determinant map given by

the total family f . For any proper subvariety S ′ ⊂ S containing s of dimen-

sion m < n, we can restrict the family f to S ′. Let ∆S′,s be the determinant

map analogous to (2). Set V be the subspace of H0(ωC) generated by all

the images of ∆S′,s when S′ runs over all the proper subvarieties of S with

m < n. Hence we define

β :

n+1
∧

W −→ H0(ωC)/V,

as the composition of ∆S,s with the quotient map H0(ωC) → H0(ωC)/V.

Then one can show that β factors through
∧n+1 U to give a map

(3) α :

n+1
∧

U −→ H0(ωC)/V.

We call this map “adjunction map”.

To study α, we use the language of vector bundles. Every n-dimensional

subspace V of H1(TC) can be identified with T ∗
S,s for some smooth variety S

of dimension n. The natural extension associated to V defines a rank n + 1

vector bundle which plays the role of the cotangent sheaf Ω1
C|C . Consider

the evaluation map W → Ω1
C |C : its kernel is given by a rank n vector

bundle on C. The dual of this vector bundle M contains all the information

to compute the map α. Then we reduce the problem to study M and its

properties. Since c1(M) = c1(ωC), it is defined the determinant map

(4)

n
∧

H0(M) −→ H0(

n
∧

M) −→ H0(ωC),

which is strictly linked to the map α as we will show in Section 2. We have

the following
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Theorem 1. Let C be a smooth complete curve of genus g. Let M be

a rank n vector bundle on C such that c1(M) = c1(ωC) and h0(M∗) = 0.

Assume there is a subspace Π of H0(M) of dimension 2n+1 generating M .

If the map (4) restricted to
∧nΠ

(5) φ :
n
∧

Π −→ H0(ωC),

is injective, then there exists a family f : C → S of smooth curves over a

smooth variety S with dim(S) = n such that the adjunction map (3) is not

trivial.

Moreover, in Section 2, comparing the construction of Ω1
C |C and M , we

will show that the space Π ⊂ H0(M) corresponds essentially to the dual of

the space W ⊂ H0(Ω1
C |C) introduced before.

We focus our attention on the case n = 2. Since M has canonical

determinant, then M ' M ∗ ⊗ ωC . Consider the following commutative

diagram
∧2 H0(M)

φ
−→ H0(ωC)

ρ


y



yτ

H0(M) ⊗ H0(M∗ ⊗ ωC)
µ

−→ H0(M ⊗ M∗ ⊗ ωC)

where τ is the dual of the trace map H1(End M) → H1(OC), ρ is the dual

of the linear map H0(M)∗ ⊗ H0(M)∗ → Hom(
∧2 H0(M), C) induced by

the cup product (see [16] p. 155) and µ is the Petri map for rank 2 vector

bundles (see [4], [16]).

The injectivity of the map φ is studied in the lower genus case for stable

vector bundles in [16]. The main difficulty is to deal with non decomposable

tensors. We study a simplified version of the problem using M as a direct

sum of line bundles of the same degree, that is, the semistable case.

We start considering a rank 2 vector bundle M on C of the form M =

A ⊕ (ωC ⊗ A∗), where h0(A) = 4 and deg(A) = g − 1. Such a line bundle

exists for a generic smooth curve of genus g ≥ 16. For a suitable choice

of a subspace Π ⊂ H0(M), the map
∧2 Π → H0(A) ⊗ H0(ωC ⊗ A∗) is

injective; hence the injectivity of the Petri map for line bundles implies that

the map (5) satisfies the hypothesis of Theorem 1. Moreover, a result in [7]

assures that there exists a smooth curve C of genus g ≥ 10, which admits a

theta-characteristic A with h0(A) = 4 and such that the linear system |A|

defines an embedding of C in P3. Hence we use a theta characteristic A to
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construct M as before. It is possible to find a space Π such that the map
∧2 Π → Sym2 H0(A) is injective and to show that our curve does not lie on

quadrics in P3. Theorem 1 allows us to conclude

Theorem 2. There is a family of smooth curves C of genus g ≥ 10 on

a smooth variety S of dimension 2 for which the adjunction map α is not

trivial.

The last part of this paper is dedicated to applications. Let W 2 be

the cycle in CHg−1
2 (J ) as in the decomposition of the cycle W. Ikeda’s

theorem assures that if the adjunction map is not trivial, then also the higher

infinitesimal invariant associated to this family of curves is not zero. So there

exists a non trivial element in the higher Griffiths groups Griff g−1,2(Js).

Hence, we have the following

Theorem 3. For general smooth curves of genus g ≥ 16, the cycle

W2
s is a non trivial element in the higher Griffiths group Griff g−1,2(Js).

Moreover, there exist curves of genus g ≥ 10 for which the correspondent

cycle W2
s is non trivial in Griff g−1,2(Js).

This theorem agrees with a result of Fakhruddin: in [12], it is proved

that there are curves of genus g ≥ 11 for which the cycle W 2
s is not alge-

braically equivalent to zero.

The paper is organized as follows.

In Section 1, we define the “α-determinant” map for rank k vector

bundles, which is a generalization of the adjunction map referred to above.

Section 2 is dedicated to prove our main Theorem 1. In Section 3, we define

the adjunction map αn+1
S,s giving a geometric interpretation in terms of defor-

mation theory of curves. Moreover, we analyze cases n = 1 and n = 2 using

local coordinates to make a direct computation of the adjunction map. In

Section 4, we will exhibit a rank 2 vector bundle on smooth curves of genus

g ≥ 10 with the properties required in Theorem 1. In Section 5, we review

some basic results about algebraic cycles and filtrations on Chow groups.

We recall the definition of the higher Griffiths’ infinitesimal invariant of al-

gebraic cycles and we explain the link between φν,1s and the adjunction map;

at the end, we prove Theorem 3.

Acknowledgements. We would like to thank Alberto Collino, At-

sushi Ikeda, Shuji Saito and Enrico Schlesinger for valuable suggestions and
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Notation. In this paper, a curve C is assumed to be a smooth con-

nected complete curve defined over C. All curves we consider will have

genus g > 2.

§1. The “α-determinant” map

Let C be a smooth curve and L be a line bundle on C. Consider the

extension given by the following short exact sequence

(6) 0 −→ L∗ −→ Ẽ∗ −→ H1(L∗) ⊗OC −→ 0.

There is a bijective correspondence between equivalence classes of extensions

of H1(L∗) ⊗ OC by L∗ and Ext1(H1(L∗) ⊗ OC , L∗) (see for example [23]

p. 76–77). Since we have

Ext1(H1(L∗) ⊗OC , L∗) ' H1(L∗) ⊗ H1(L∗) ' Hom(H1(L∗),H1(L∗))

(see for example [10] p. 243–244), then the vector bundle Ẽ∗ is defined by

the identity map in Hom(H1(L∗),H1(L∗)). In fact, the coboundary map of

(6) is exactly the identity.

Let V be a proper subspace of H1(L∗) of dimension r: we can construct

the corresponding extension

0 −→ L∗ −→ E∗
V −→ V ⊗OC −→ 0,

defined through the diagram

(7)

0 −→ L∗ −→ E∗
V −→ V ⊗OC −→ 0



y



y



y

0 −→ L∗ −→ Ẽ∗ −→ H1(L∗) ⊗OC −→ 0.

Dualizing (7), we obtain

(8)

0 −→ H1(L∗)∗ ⊗OC −→ Ẽ −→ L −→ 0


y



y



y

0 −→ V ∗ ⊗OC −→ EV −→ L −→ 0.

The vector bundle, EV , on C has rank r +1. The composition map ∆r+1
V =

g ◦ f defines a map given by the wedge product

(9) ∆r+1
V :

r+1
∧

H0(EV )
f

−→ H0(

r+1
∧

EV )
g

−→ H0(L).
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Consider the long exact sequence

0 −→ V ∗ ⊗ H0(OC) −→ H0(EV )
ρ

−→ H0(L)
δ

−→ V ∗ ⊗ H1(OC) −→ · · · .

Assume that dimKer(δ) ≥ r + 1. Fix a (r + 1)-dimensional subspace U in

Ker(δ). Set ρ−1(U) = W ⊂ H0(EV ): note that dim(W ) = 2r + 1. So we

can consider the restriction of the map (9) to
∧r+1 W

(10) ∆r+1
W :

r+1
∧

W ↪−→

r+1
∧

H0(EV ) −→ H0(L).

For a proper vector subspace Z ⊂ V of dimension s of H 1(L∗), we

construct, with the same techniques, a rank s + 1 vector bundle EZ . Note

that U lies in the kernel of δZ : H0(L) → Z∗ ⊗ H1(OC): then we have

a subspace WZ of H0(EZ) of dimension s + r + 1 given by ρ−1
Z (U) where

ρZ : H0(EZ) → H0(L) is defined in the above cohomology sequence.

The inclusion Z ↪→ V induces a map of vector space iWZ
: W → WZ .

Let is+1
WZ

:
∧s+1 W →

∧s+1 WZ be the map induced by iWZ
and ∆s+1

WZ
be

the map given by the wedge product
∧s+1 WZ → H0(L). We may define

ΥZ = ∆s+1
WZ

◦ is+1
WZ

ΥZ :

s+1
∧

W
is+1
WZ−→

s+1
∧

WZ

∆s+1
WZ−→ H0(L).

Let V be the space generated by all the images of ΥZ , where Z ranges over

all proper subspaces of V . Set QL,V = H0(L)/V. We consider the map

βr+1 :

r+1
∧

W −→ QL,V .

One can show that βr+1 vanishes on the kernel of
∧r+1 ρ :

∧r+1 W →
∧r+1 U .

Definition 1.1. We call “α-determinant” map the following map

αr+1
U :

r+1
∧

U −→ QL,V .



INFINITESIMAL INVARIANT AND VECTOR BUNDLES 103

§2. Vector bundles and “α-determinant”

Using vector bundles, we will give a non vanishing criterion for the

“α-determinant” map introduced in the previous section. We begin by the

construction of the rank k + 1 vector bundle EV starting from a fixed rank

k vector bundle M , with same special properties. Later on, we will show

how conditions imposed on M and on its sections imply the non triviality

of “α-determinant” map.

Let L be a line bundle on C with deg(L) > 0. From now on, let M be

a rank k vector bundle on C with c1(M) = c1(L) and h0(M∗) = 0. Assume

that Π is a (2k + 1)-dimensional subspace of H0(M) and Σ is a (k + 1)-

dimensional subspace of Π, which generates M . Look at the evaluation map

Σ ⊗OC → M ; we have a short exact sequence

(11) 0 −→ N −→ Σ ⊗OC −→ M −→ 0,

where N is a line bundle on C. Computing the first Chern class, we obtain

that c1(N) + c1(M) = 0. Since c1(M) = c1(L), it follows that

N = L∗.

Consider the long exact sequence in cohomology

0 → Σ ⊗ H0(OC)
ψ
→ H0(M)

δ
→ H1(L∗)

ϕ
→ Σ ⊗ H1(OC) → H1(M) → 0.

Then Σ lies in the kernel of δ and hence, there is a subspace V = Π/Σ

of H1(L∗) of dimension k: by abuse of notation, we also denote by V the

subspace of H0(M) whose elements, via δ, generate Im(δ).

Let E∗
V be the kernel of the evaluation map Π⊗OC → M . We construct

the following diagram

(12)

0 0
x



x



0 −→ M −→ M −→ 0
x



x



x



0 −→ Σ ⊗OC −→ Π ⊗OC −→ V ⊗OC −→ 0
x



x



x



0 −→ L∗ −→ E∗
V −→ V ⊗OC −→ 0

x



x



x



0 0 0.
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Hence we obtain the exact sequence

0 −→ L∗ −→ E∗
V −→ V ⊗OC −→ 0.

Therefore, we summarize the construction in the following

Proposition 2.1. Let M be a rank k vector bundle on C such that

c1(M) = c1(L) and h0(M∗) = 0. Assume that Π is a subspace of H0(M)

of dimension 2k + 1 which generates M and Σ is a subspace of Π with

dim(Σ) = k + 1 such that it generates M . Set V = Π/Σ. Then there exists

a rank k +1 vector bundle EV on C with at least 2k +1 non trivial sections

and there is the following exact sequence

(13) 0 −→ L∗ −→ E∗
V −→ V ⊗OC −→ 0.

The sequence (13) is exactly that we have considered in Section 1. Con-

sider the following diagram induced in cohomology by the dual of (12)

0 → V ∗ ⊗ H0(OC) → Π∗ ⊗ H0(OC) → Σ∗ ⊗ H0(OC) → V ∗ ⊗ H1(OC) →


y



y



y



y

0 → V ∗ ⊗ H0(OC) → H0(EV ) → H0(L) → V ∗ ⊗ H1(OC) →

Hence, looking at the construction of EV , we can identify the space Π∗

with W , where W is the space of sections of EV introduced in the previous

section. Then, for convenience of notations, in the rest of this section, we

set Π = W ∗.

Consider the composition map φ

φ :

k
∧

W ∗ ↪−→

k
∧

H0(M) −→ H0(L).

given by the restriction to
∧k W ∗ of the determinant map

∧k H0(M) →

H0(
∧k M) → H0(L).

The condition h0(M∗) = 0 implies that there is an inclusion Σ → H0(L)

in the cohomology sequence of the dual of (11). Let U be the image of this

inclusion in H0(L). Consider the dual sequence of (13)

0 −→ V ∗ ⊗OC −→ EV −→ L −→ 0.

Note that U is a (k + 1)-dimensional subspace of H 0(L) which lies in the

kernel of the coboundary map δ : H0(L) → V ∗ ⊗ H1(OC). So we can
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consider ρ−1(U) ⊂ H0(EV ) and, using the dual diagram of (12), we can

identify ρ−1(U) = W .

We give a criterion to establish whether the “α-determinant” map αk+1
U :

∧k+1 U → QL,V is zero.

Theorem 2.2. Under hypotheses of Proposition 2.1, suppose that M

is the rank k vector bundle and W ∗ is the subspace of H0(M) introduced

before. If the map

φ :
k

∧

W ∗ −→ H0(L)

is injective, then the “α-determinant” map αk+1
U :

∧k+1 U → QL,V is not

zero.

Proof. We begin by noting that the injectivity of the map Σ → U

implies that also the map
∧k+1 Σ →

∧k+1 U is injective. We want to show

that the map αk+1
U :

∧k+1 U → QL,V is not zero; actually we will prove that

the map
∧k+1 Σ → QL,V is not zero.

Note that dim(W ∗) = 2k + 1; then we have an isomorphism
∧k W ∗ '

∧k+1 W (defined up to a constant). Then we can rewrite φ as the injection

φ′ :
∧k+1 W → H0(L).

Let H be the kernel of the map
∧k+1 W →

∧k+1 Σ. We have to show

that the map χ defined in the following diagram is surjective

0 −→ H −→
∧k+1 W −→

∧k+1 Σ −→ 0
χ


y φ′


y αk+1
U



y

0 −→ V −→ H0(L) −→ QL,V −→ 0.

The space V was defined in Section 1 as the subspace of H 0(L) spanned

by the image of ΥZ , where Z is a proper subspace of V of dimension r.

Following the construction of Proposition 2.1, let EZ be the rank r + 1

vector bundle associated to Z and WZ be a subspace of H0(EZ) of dimension

k + r + 1 given by ρ−1
Z (U).

Let Y ∗ be the kernel of the map V ∗ → Z∗: note that dim(Y ∗) = k − r.

Then we have the exact sequence

(14) 0 −→ Y ∗ −→ W −→ WZ −→ 0.
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Consider the (k + 1)-wedge product of the sequence before

0 −→ WV,Z −→

k+1
∧

W −→

k+1
∧

WZ −→ 0;

the kernel WV,Z is given by
⊕k−1

p=r(
∧p+1 WZ ⊗

∧k−p Y ∗). Let HZ be the

kernel of
∧k+1 WZ →

∧k+1 Σ. We construct a new commutative diagram

0 0
x



x



0 −→
∧k+1 Σ −→

∧k+1 Σ −→ 0
x



x



x



0 −→ WV,Z −→
∧k+1 W −→

∧k+1 WZ −→ 0
x



x



x



0 −→ WV,Z −→ H −→ HZ −→ 0
x



x



x



0 0 0.

Consider
∧r+1 WZ ⊗

∧k−r Y ∗ ⊂ WV,Z . Now fixing a basis y1, . . . , yk−r of

the space Y ∗, we have the isomorphism
∧r+1 WZ '

∧r+1 WZ ⊗
∧k−r Y ∗.

Then
∧r+1 WZ lies in H.

It remains to show that the images in H0(L) of the following two maps

r+1
∧

W −→

r+1
∧

WZ −→ H0(L)

r+1
∧

WZ ↪−→

k+1
∧

W −→ H0(L)

are equal. First, let s1, . . . , sr+1 be r + 1 elements in WZ . Set s̃i be liftings

of si in W for i = 1, . . . , r + 1. Hence, the element s̃1 ∧ · · · ∧ s̃r+1 ∈
∧r+1 W

corresponds exactly to s1 ∧ · · · ∧ sr+1 ∈
∧r+1 WZ . Locally, by a choice of

the basis of W , the map
∧r+1 W → H0(L) is given by the determinant

det[s1, . . . , sr+1].

Moreover, consider the sequence (14): we can identify W = WZ ⊕ Y ∗.

Through a suitable choice of a basis of W , that is, completing y1, . . . , yk−r
with a basis of WZ , the element s1∧· · ·∧sr+1∧y1∧· · ·∧yk−r ∈

∧r+1 WZ⊗
∧k−r Y ∗ ⊂

∧k+1 W goes to

det

[

s1, . . . , sr+1 0

. . . Ik−r

]

,
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as a local computation of the determinant map shows. This allows us to

conclude that the map χ is surjective.

§3. The adjunction map

In this section, we consider the case L = ωC . We will give a geometric

interpretation of the “α-determinant” map using the language of infinitesi-

mal deformations of the curve C.

Let f : C → S be a family of smooth curves of genus g over S, a smooth

irreducible variety of dimension n. Consider a general point s ∈ S: we call

C the curve f−1(s) over the point s. If we consider the restriction at C of

the morphism of vector bundle TC → f∗(TS), there is an exact sequence

(15) 0 −→ TC −→ TC |C −→ f∗TS,s −→ 0.

Note that f ∗TS,s is a trivial vector bundle with fibers TS,s. The extension

of (15) is classified by the Kodaira-Spencer map

ρ : TS,s = H0(C, f∗TS,s) −→ H1(C, TC),

induced by the long exact sequence in cohomology. Suppose that ρ is in-

jective. By abuse of notation, we denote again with TS,s the image of ρ in

H1(TC). In particular, it will be more useful the dual of (15)

(16) 0 −→ T ∗
S,s ⊗OC −→ Ω1

C |C −→ ωC −→ 0.

So we rewrite the map (9) given by the determinant in this way

(17) ∆n+1
S,s :

n+1
∧

H0(Ω1
C |C) −→ H0(

n+1
∧

Ω1
C|C) −→ H0(ωC).

The coboundary map δ[ξ] : H0(ωC) → T ∗
S,s⊗H1(OC) is given by the cup

product with the extension class of the sequence (15) [ξ] ∈ TS,s ⊗ H1(OC).

Fix U be a subspace of dimension n + 1 of the kernel of δ[ξ]. We can pick

W in H0(Ω1
C |C) defined by ρ−1(U) with ρ : H0(Ω1

C |C) → H0(ωC). Remark

that wi ∈ U is equivalent to ask that ξj · wi = 0 with ξj ∈ H1(TC) for

j = 1, . . . , n.

Let S′ be a smooth irreducible proper subvariety of S of dimension

m < n, containing s. Consider the restriction of the family f ′ : C → S′ over

the subvariety S ′. We can repeat the same argument for the family f ′: in
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particular, we find a subspace W ′ of dimension m + n + 1 of H0(Ω1
C/S′ |C).

This allows us to define, as in Section 1, a map

ΥS,S′,s :

m+1
∧

W −→

m+1
∧

W ′
∆m+1

S′,s
−→ H0(ωC).

where the map ∆m+1
S′,s is induced by the determinant

∧m+1 W ′ → H0(ωC).

We denote by V the subspace of H0(ωC) generated by all the plural image

of the map ΥS,S′,s, where S′ ranges over all the proper subvarieties of S with

0 ≤ dim(S′) = m < n. Notice that if m = 0, the subvariety S ′ is reduced

to a point {s}: in this case, we are considering the space generated by the

image of the map H0(Ω1
C/{s}|C) ' H0(ωC) → H0(ωC), i.e. by the image of

the n 1-forms themselves. From now on, we denote QωC ,V = H0(ωC)/V.

Remark 3.1. Let S̃ be a smooth proper subvariety of S of dimension k.

The dimension of the image of the map ΥS,S̃,s in H0(ωC) is %k = n+1
k+1

[(n
k

)]2
.

When S̃ ranges over all the proper subvarieties of S and all these conditions

are independent, as one expects, then we have g ≥
∑n−1

k=0 %k.

Finally, we define the “α-determinant” map which, in this case, is called

adjunction map

(18) αn+1
S,s :

n+1
∧

U −→ QωC ,V .

Now we can prove Theorem 1.

Proof of Theorem 1. Let V be a proper subspace of H 1(TC) of dimen-

sion n. Since H1(TC) parametrizes the first order plural, we can identify V

with a subspace TS,s of H1(TC) for any variety S of dimension n. Then we

are able to construct the correspondent extension

0 −→ TC −→ E∗ −→ TS,s ⊗OC −→ 0.

We look at the dual sequence.

(19) 0 −→ T ∗
S,s ⊗OC −→ E −→ ωC −→ 0.

The vector bundle E has rank n+1. The sequence (19) allows us to identify

the rank n+1 vector bundle E with the cotangent sheaf of a family f : C → S

of smooth curves of genus g over S restricted to a fiber C, Ω1
C |C , where S is

the smooth irreducible variety of dimension n introduced before. Hence, to

conclude the proof, it is enough to apply Proposition 2.1 and Theorem 2.2

in the case of L = ωC .
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In the following paragraph, we analyze in details cases n = 1 and n = 2.

In particular we give a description of the adjunction map α3
S,s using local

coordinates.

3.1. Some examples: the cases n = 1 and n = 2

Let C → S be a family of smooth curves of genus g over a smooth

variety S of dimension n. We have the following exact sequence

(20) 0 −→ N ∗ −→ Ω1
C |C −→ ωC −→ 0

where N ∗ is the conormal bundle. Remark that if we choose a basis for

the tangent space TS,s, we have N ' TS,s ⊗ OC with the notations used

before. Fix U in Ker(δ) of dimension n + 1 where δ is the coboundary map

H0(ωC) → T ∗
S,s ⊗ H1(OC).

The case n = 1 is treated by Collino and Pirola in [6]. The adjunction

map α2
S,s :

∧2 U → QωC ,V can be described in terms of coordinates in the

following way. Let w1, w2 ∈ U : there exist two liftings w̃1, w̃2 ∈ H0(Ω1
C |C).

Then we have

α2
S,s(w1 ∧ w2) = det

[

w1 w2

h1 h2

]

,

where we write w̃i = wi dz + hi dε for i = 1, 2, with hi ∈ C∞(C). It is easy

to check that the map α2
S,s(w1 ∧ w2) is well defined modulo the space V,

which in this case is spanned only by w1 and w2.

Consider now a family of smooth curves over a variety S of dimension

2; the adjunction map

(21) α3
S,s :

3
∧

U −→ QωC ,V ,

can be expressed in terms of local coordinates as follows

α3
S,s(w1 ∧ w2 ∧ w3) = det





w1 w2 w3

h1 h2 h3

g1 g2 g3



,

where w1, w2, w3 ∈ U and we write liftings w̃i ∈ H0(Ω1
C |C) in local coordi-

nates w̃i = wi dz + hi dε1 + gi dε2 for i = 1, 2, 3. Observe that, in this case,

V is the 10-dimensional space spanned by w1, w2, w3 and by α2
S,s(wh ∧wk)

for h, k = 1, 2, 3 but h 6= k.
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§4. Construction of a rank 2 vector bundle

In this paragraph, we consider k = 2 and L = ωC . We are going to

exhibit an explicit rank 2 vector bundle M on a smooth curve C of genus

g ≥ 10, with a space Π ⊂ H0(M), which satisfies all properties required in

the hypotheses of Theorem 1. This allows us to conclude that the adjunction

map α3
S,s :

∧3 U → QωC ,V is not trivial.

For convenience, we will indicate with (?) the whole of the following

properties:

1) M is generated by global sections;

2) M has canonical determinant;

3) h0(M) ≥ 5;

4) h0(M∗) = 0;

5) there is a 5-dimensional subspace Π of H0(M) such that the map
∧2 Π → H0(ωC) is injective.

Theorem 4.1. Let C be a smooth complex curve of genus g.

(i) For a general smooth curve C of genus g ≥ 16, there is a rank 2 vector

bundle M on C which satisfies the condition (?).

(ii) For g ≥ 10, there exists a smooth curve C such that admits a rank 2

vector bundle M which satisfies the condition (?).

Proof of Part (i). We construct M as a sum of two line bundles

M = A ⊕ (ωC ⊗ A∗),

where A is a base points free line bundle with h0(A) = 4 and deg(A) = g−1.

Observe that A ∈ W 3
g−1 = {A ∈ Picg−1(C) : h0(A) ≥ 4}. Brill-Noether

theory assures that the general curve of genus g ≥ 16 admits such a linear

system. It is easy to check that M is a rank 2 vector bundle on C which

satisfies the first four properties of (?).

Then it remains to prove that there is a 5-dimensional subspace Π of

H0(M) such that
∧2 Π → H0(ωC) is injective.

Observe that
∧2 H0(M) =

∧2 H0(A) ⊕
∧2 H0(ωC ⊗ A∗) ⊕ H0(A) ⊗

H0(ωC ⊗ A∗). Consider the Petri map for line bundles

µ : H0(A) ⊗ H0(ωC ⊗ A∗) −→ H0(ωC).
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A classical result (see [13]) of the theory of the moduli space of curves of

genus g assures that if [C] ∈ Mg is general, the Petri map is injective for

every line bundle A on C.

Let si and ti for i = 1, . . . , 4 be non trivial sections of A and ωC ⊗ A∗

respectively. Define Π to be the vector space spanned by

(s1, 0), (0, t1), (s2, t2), (s3, t3), (s4, t4).

So it remains to show that
∧2 Π

ϕ
→ H0(A) ⊗H0(ωC ⊗A∗) is injective. But

this follows by a direct computation of the image of ϕ.

Proof of Part (ii). As in the previous case, we want to construct M as

an extension of line bundles. We define

M = A ⊕ A,

where A is a theta-characteristic such that h0(A) = 4. Obviously, we have

deg(A) = g − 1. Then M is a rank 2 vector bundle on C which satisfies 1–4

in (?).

We construct directly an example of smooth curve C of genus 10 with

a theta characteristic A with h0(A) = 4 without base points. Noting that

the curve must have degree 9, we take C as complete intersection of two

cubics in P3. The linear system |A| defines an embedding of C in P3 and

so OC(1) = A. Moreover, since A has to be a theta characteristic, it holds

OC(2) = ωC .

Now look at smooth curves of genus g ≥ 11. The existence of such a

theta-characteristic A on C is assured by the following

Theorem 4.2. ([7]) Let M3
g be the subset of the moduli space Mg

parametrizing smooth curves of genus g with an even theta-characteristic

whose space of sections has dimension at least 4. For g ≥ 9, there is a

component of M3
g whose generic point corresponds to a curve C with theta-

characteristic A such that |A| defines an embedding of C in P3.

To conclude the proof, we will construct a 5-dimensional subspace Π of

H0(M) such that
∧2 Π → H0(ωC) is injective.

Consider the vector space Π spanned by

(s1, 0), (0, s2), (s2, s3), (s3, s4), (s4, s1)
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where si for i = 1, . . . , 4 are non trivial independent sections of A. The map
∧2 Π

ϕ
→ Sym2 H0(A) is injective: this follows by a direct computation of

the image of ϕ

ϕ((s1, 0) ∧ (0, s2)) = s1 ⊗ s2

ϕ((s1, 0) ∧ (s2, s3)) = s1 ⊗ s3 ϕ((0, s2) ∧ (s3, s4)) = s2 ⊗ s3

ϕ((s1, 0) ∧ (s4, s1)) = s1 ⊗ s1 ϕ((0, s2) ∧ (s2, s3)) = s2 ⊗ s2

ϕ((s1, 0) ∧ (s3, s4)) = s1 ⊗ s4 ϕ((0, s2) ∧ (s4, s1)) = s2 ⊗ s4

ϕ((s2, s3) ∧ (s3, s4)) = s2 ⊗ s4 − s3 ⊗ s3

ϕ((s2, s3) ∧ (s4, s1)) = s2 ⊗ s1 − s3 ⊗ s4

ϕ((s3, s4) ∧ (s4, s1)) = s3 ⊗ s1 − s4 ⊗ s4.

Consider the embedding of the curve C given by the linear system |A|

ϕ|A| : C −→ P3.

Since the kernel of the multiplication map Sym 2 H0(A) → H0(ωC) is given

by H0(IC(2)), it is enough to show that C does not lie on a quadric surface

in P3.

It is clear that the curve C complete intersection of two cubics does not

lie on a quadric in P3.

Consider now curves of genus g ≥ 11. If C lies on a smooth quadric

surface Q4 ⊂ P3, we can describe it through its bidegree (a, b). By the

computation of the degree and the genus, we obtain that ab − 2a − 2b = 0:

this equality shows that such a curve of genus g ≥ 11 does not exist on a

smooth quadric surface.

Now it remains to show that C does not lie in Q3, where Q3 is a rank

3 quadric in P3, that is, a cone over a smooth conic Γ ⊂ P2, with vertex P .

Blowing up the point P , we obtain a ruled surface S = F2. Then a curve C

on this surface can be written as aC0 + bf where f is a fibre and C0 is the

section corresponding to the vertex such that C 2
0 = −2. The computation

of the genus and the degree of C establishes that b = a + 2 + 4
a−2 . Then

also this case is impossible.

Here we prove Theorem 2.

Proof of Theorem 2. The proof is a direct consequence of Theorems 2.2

and 4.1. In fact we have seen that on the general smooth curve C of genus
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g ≥ 16, there exists a rank 3 vector bundle E, which can be identified with

Ω1
C |C for a family C of curves of genus g ≥ 16, such that the correspondent

adjunction map α3
S,s is not trivial. Similarly, for g ≥ 10 there exists a

smooth curve C which admits a rank 3 vector bundle E ' Ω1
C|C such that

the map α3
S,s is not zero where C is a family of curves of genus g ≥ 10.

§5. Application to the infinitesimal invariant

We will study the infinitesimal invariant for a family of algebraic cy-

cles on jacobian varieties, using vector bundles. In fact, the infinitesimal

invariant can be computed through the adjunction map, as Ikeda showed

[11].

5.1. Filtrations on Chow groups

We recall some definitions about filtrations on Chow groups, in [18] and

[19].

Let X and Y be two smooth projective varieties with n = dim(X) and

m = dim(Y ). A correspondence between X and Y is an algebraic cycle

Γ ∈ CHr(Y × X). It induces a map

Γ∗ : CHk(X) −→ CHk+r−m(Y )

by defining Γ∗(α) = (prY )∗((prX)∗(α) · Γ), where prX : Y × X → X and

prY : Y × X → Y are the projections and · is the product intersection of

cycles.

Definition 5.1. Let X be a family of smooth projective varieties over

a smooth variety S. We define a decreasing filtration on CH r(X )

F 0CHr(X ) ⊃ F 1CHr(X ) ⊃ · · · ⊃ F νCHr(X ) ⊃ · · ·

in the following inductive way. For ν = 0 F 0CHr(X ) = CHr(X );

F ν+1CHr(X ) =
∑

V ,q,Γ

Im{Γ∗ : F νCHr+dV −q(V) → CHr(X )}

where V, q and Γ range over the following data:

1. V is a family of smooth projective varieties over S of dimension dV ;

2. q is an integer such that r ≤ q ≤ r + dV ;
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3. Γ ∈ CHq(V × X ) is an algebraic cycle such that for any s ∈ S, the

map

Γ∗ : H2dV −2q+2r−ν(Vs) −→ H2r−ν(Xs)/F
r−ν+1(Xs)

is zero.

Remark 5.2. We can describe completely only some of these spaces

F νCHr(X ). We know that

F 1CHr(X ) = CHr(X )hom ,

where CHr(X )hom denotes the subgroup of cycle classes which are homo-

logically equivalent to zero. Moreover, we know that

F 2CHr(X ) ⊂ Ker(AJ rX ),

where AJ rX : CHr(X )hom → J r(X ) is the Abel-Jacobi map.

It is possible to introduce an ascending filtration ZlF
νCHr(X ) on

F νCHr(X ). We report only that part we need for the definition of the

higher Griffiths group and refer to [18] for the complete subject. We define

Z0F
νCHr(X ) ⊂ F νCHr(X ) in the following way:

Z0F
νCHr(X ) =

∑

Y ,Γ

Im{Γ∗ : F νCHdY (Y) → CHr(X )},

where Y ranges over all projective smooth varieties with relative dimension

dY over S and Γ runs over CHr+l(Y × X ). Note that for ν = 1 we have

Z0F
1CHr(X ) = CHr(X )alg

where CHr(X )alg is the subgroup of cycle classes which are algebraically

equivalent to zero.

Definition 5.3. We define the higher Griffiths group

(22) Griff r,ν(X ) = F νCHr(X )/F ν+1CHr(X ) + Z0F
νCHr(X ).

Griff r,ν(X ) is a generalization of the Griffiths group in the context of

the filtration on Chow groups. In fact, for ν = 1, Griff r,1(X ) is the quotient

of the Griffiths group CHr(X )hom/CHr(X )alg by the image of F 2CHr(X ).
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5.2. The infinitesimal invariant

Let C be a family of smooth curves of genus g over a smooth variety S of

dimension n, with a section p. Consider J the family of jacobian fibrations

of relative dimension g over S. Let

C −→ J

be the canonical morphism of C into J defined by the section, P → [P − p].

The image of this morphism is an algebraic cycle W of codimension g−1 in

J . By the cycle class map, we take W ∈ CHg−1(J ) ⊗ Q. The Beauville’s

decomposition [2] allows us to decompose CH g−1(J ) ⊗ Q in this way

CHg−1(J ) ⊗ Q =

g−1
⊕

i=−1

CHg−1
i (J )Q,

with CHg−1
i (J )Q = {α ∈ CHg−1(J ) ⊗ Q | k∗α = k2g−2−iα ∀k ∈ Z} where

we denote with k the multiplication on J and with k∗ the corresponding

operation on the Chow group of J . So the cycle W is decomposed in the

rational Chow group of J in the following way

W =
∑

ν

Wν ∈ CHg−1(J ) ⊗ Q.

Moreover, Murre [17] shows that
⊕

i≥ν CHg−1
i (J )Q ⊂ F νCHg−1(J ) ⊗ Q.

Consider the algebraic cycle Wν ∈ F νCHg−1(J ) ⊗ Q: for a general

point s ∈ S, we define the higher infinitesimal invariant as the linear map

φνs = φνs (W
ν) : V g−1,ν

s −→ C

where V g−1,ν
s is the cohomology of the Koszul complex

ν+1
∧

TS,s ⊗ H0(Ων+2
Js

) −→

ν
∧

TS,s ⊗ H1(Ων+1
Js

) −→ TS,s ⊗ H2(Ων
Js

).

Consider the natural map ε : TS,s ⊗ H0(Ων+2
Js

) → H1(Ων+1
Js

) induced by the

cup product with the Kodaira-Spencer class and let L0V
g−1,ν be the space

given by (
∧ν TS,s ⊗ Im(ε)) ∩ V g−1,ν

s (see [11]).

Ikeda (cfr. Prop. (3.7) in [11]) shows a formula for calculating the in-

finitesimal invariant

(23) φνs (W
ν)(ξ1∧· · ·∧ξν⊗w1∧· · ·∧wν+1⊗σ) = 〈αν+1

S,s (w1∧· · ·∧wν+1), σ〉,
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where ξj ∈ TS,s, wi ∈ H0(Ω1
Js

) and σ ∈ H1(OJs). The computation of

the infinitesimal invariant allows us to establish if the cycle is contained in

F ν+1CHg−1(Js) or in Z0F
νCHg−1(Js).

Proposition 5.4. (Ikeda) Suppose s ∈ S is generic with respect to

Wν ∈ F νCHg−1(J ).

1. If Wν ∈ F ν+1CHg−1(Js), then the infinitesimal invariant at s

φνs(W
ν) : V g−1,ν

s → C is zero.

2. If Wν ∈ Z0F
νCHg−1(Js), then the infinitesimal invariant at s

φνs(W
ν) : L0V

g−1,ν
s → C is zero.

We refer to [11] for the proof.

5.3. Main theorem

In this section, we will prove Theorem 3. Consider a family of smooth

curves C of genus g ≥ 10 over a variety S of dimension 2 and the correspon-

dent family of jacobian J over S. We have the following

Theorem 5.5. For a family C of general smooth curves of genus g ≥

16 over a smooth variety S of dimension 2, consider the algebraic cycle

W2 ∈ CHg−1
2 (J ) in the Beauville’s decomposition of W. Then the cycle

W2
s is not trivial in Griff g−1,2(Js) where Js is the fiber of the family J over

the generic point s ∈ S. Moreover, there exists a family of curves of genus

g ≥ 10 such that the cycle W2
s is a non trivial element in Griff g−1,2(Js).

Proof. Let s ∈ S be a point. We compute the infinitesimal invariant

at s of the cycle W2.

Theorem 2 assures if Cs is a general smooth curve of genus g ≥ 16, the

adjunction map defined in (3.1),

α3
S,s :

3
∧

U −→ QωC ,V

is not zero, where U is a 3-dimensional subspace of H 0(Ω1
C |Cs) contained in

the kernel of the coboundary map of (16). Moreover, again by Theorem 2,

we know that there exists a family of curves of genus g ≥ 10 for which the

map α3
S,s is not trivial.

Consider wi ∈ U for i = 1, 2, 3. We remark that the condition wi ∈ U

is equivalent to require that

ξj · wi = 0
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for i = 1, 2, 3 where ξj ∈ H1(TCs) for j = 1, 2. Notice that H0(Ω1
Cs

) '

H0(Ω1
Js

); so we can take wi ∈ H0(Ω1
Js

). Take w4 ∈ H0(Ω1
Js

) and set σ =

ξ2 · w4 ∈ H1(OJs). Obviously we have 〈wi, σ〉 = 0 for i = 1, 2, 3.

A direct computation shows that the element ξ1 ∧ ξ2 ⊗w1 ∧w2 ∧w3 ∧σ

is contained in V g−1,ν
s ; the choice of σ assures that ξ1∧ ξ2⊗w1∧w2∧w3∧σ

lies also in L0V
g−1,2
s .

Therefore, we can evaluate φ2
s(ξ1 ∧ ξ2 ⊗ w1 ∧ w2 ∧w3 ⊗ σ). By formula

(23) with ν = 2, we have

φ2
s(ξ1 ∧ ξ2 ⊗ w1 ∧ w2 ∧ w3 ⊗ σ) = 〈α3

S,s(w1 ∧ w2 ∧ w3), σ〉.

It is possible to verify directly this equality using the expression of α3
S,s in

coordinates.

The non-triviality of α3
S,s(w1 ∧ w2 ∧ w3) allows us to conclude that

also the infinitesimal invariant is not zero. Proposition 5.4 concludes the

proof. In fact, the cycle W2
s is contained neither in F 3CHg−1(Js) nor in

Z0F
2CHg−1(Js). Hence W2

s is a non trivial element in Griff g−1,2(Js) where,

by definition (22), we have

Griff g−1,2(Js) = F 2CHg−1(Js)/F
3CHg−1(Js) + Z0F

2CHg−1(Js).
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