Open Access
September 2017 Quadratic numerical semigroups and the Koszul property
Jürgen Herzog, Dumitru I. Stamate
Kyoto J. Math. 57(3): 585-612 (September 2017). DOI: 10.1215/21562261-2017-0007

Abstract

Let H be a numerical semigroup. We give effective bounds for the multiplicity e(H) when the associated graded ring grmK[H] is defined by quadrics. We classify Koszul complete intersection semigroups in terms of gluings. Furthermore, for several classes of numerical semigroups considered in the literature (arithmetic, compound, special almost-complete intersections, 3-semigroups, symmetric or pseudosymmetric 4-semigroups) we classify those which are Koszul.

Citation

Download Citation

Jürgen Herzog. Dumitru I. Stamate. "Quadratic numerical semigroups and the Koszul property." Kyoto J. Math. 57 (3) 585 - 612, September 2017. https://doi.org/10.1215/21562261-2017-0007

Information

Received: 30 October 2015; Accepted: 25 April 2016; Published: September 2017
First available in Project Euclid: 22 April 2017

zbMATH: 06774048
MathSciNet: MR3685056
Digital Object Identifier: 10.1215/21562261-2017-0007

Subjects:
Primary: 13A30
Secondary: 13C40 , 13H10 , 13P10 , 16S36 , 16S37

Keywords: arithmetic sequence , complete intersection , gluing , Koszul ring , numerical semigroup , quadratic ring , standard basis , symmetric and pseudosymmetric semigroups , tangent cone

Rights: Copyright © 2017 Kyoto University

Vol.57 • No. 3 • September 2017
Back to Top