Abstract
We study homological properties of test modules that are, in principle, modules that detect finite homological dimensions. The main outcome of our results is a generalization of a classical theorem of Auslander and Bridger: we prove that if a commutative Noetherian complete local ring admits a test module of finite Gorenstein dimension, then is Gorenstein.
Citation
Olgur Celikbas. Hailong Dao. Ryo Takahashi. "Modules that detect finite homological dimensions." Kyoto J. Math. 54 (2) 295 - 310, Summer 2014. https://doi.org/10.1215/21562261-2642404
Information