Open Access
October 2002 Uniqueness of entire functions and fixed points
Jianming Chang, Mingliang Fang
Kodai Math. J. 25(3): 309-320 (October 2002). DOI: 10.2996/kmj/1071674464

Abstract

Let $f$ be a nonconstant entire function. %If $f(z)=z$ $\Longleftrightarrow $ $f'(z)=z$, and %$f'(z)=z$ $\Longrightarrow $ $f''(z)=z$, then $f\equiv f'$. In particular, If $f$, $f'$ and $f''$ have the same fixed points, then $f\equiv f'.$

Citation

Download Citation

Jianming Chang. Mingliang Fang. "Uniqueness of entire functions and fixed points." Kodai Math. J. 25 (3) 309 - 320, October 2002. https://doi.org/10.2996/kmj/1071674464

Information

Published: October 2002
First available in Project Euclid: 17 December 2003

zbMATH: 1031.30015
MathSciNet: MR2003I:30041
Digital Object Identifier: 10.2996/kmj/1071674464

Rights: Copyright © 2002 Tokyo Institute of Technology, Department of Mathematics

Vol.25 • No. 3 • October 2002
Back to Top