Open Access
October, 2019 Arnold's problem on monotonicity of the Newton number for surface singularities
Szymon BRZOSTOWSKI, Tadeusz KRASIŃSKI, Justyna WALEWSKA
J. Math. Soc. Japan 71(4): 1257-1268 (October, 2019). DOI: 10.2969/jmsj/78557855

Abstract

According to the Kouchnirenko Theorem, for a generic (meaning non-degenerate in the Kouchnirenko sense) isolated singularity $f$ its Milnor number $\mu (f)$ is equal to the Newton number $\nu (\mathbf{\Gamma}_{+}(f))$ of a combinatorial object associated to $f$, the Newton polyhedron $\mathbf{\Gamma}_+ (f)$. We give a simple condition characterizing, in terms of $\mathbf{\Gamma}_+ (f)$ and $\mathbf{\Gamma}_+ (g)$, the equality $\nu (\mathbf{\Gamma}_{+}(f)) = \nu (\mathbf{\Gamma}_{+}(g))$, for any surface singularities $f$ and $g$ satisfying $\mathbf{\Gamma}_+ (f) \subset \mathbf{\Gamma}_+ (g)$. This is a complete solution to an Arnold problem (No. 1982-16 in his list of problems) in this case.

Citation

Download Citation

Szymon BRZOSTOWSKI. Tadeusz KRASIŃSKI. Justyna WALEWSKA. "Arnold's problem on monotonicity of the Newton number for surface singularities." J. Math. Soc. Japan 71 (4) 1257 - 1268, October, 2019. https://doi.org/10.2969/jmsj/78557855

Information

Received: 3 August 2017; Revised: 24 July 2018; Published: October, 2019
First available in Project Euclid: 14 June 2019

zbMATH: 07174406
MathSciNet: MR4023307
Digital Object Identifier: 10.2969/jmsj/78557855

Subjects:
Primary: 32S25
Secondary: 14B05 , 14J17

Keywords: Arnold's problem , Milnor number , Newton polyhedron , non-degenerate singularity

Rights: Copyright © 2019 Mathematical Society of Japan

Vol.71 • No. 4 • October, 2019
Back to Top