Open Access
April, 2019 On bifurcations of cusps
Zbigniew SZAFRANIEC
J. Math. Soc. Japan 71(2): 555-567 (April, 2019). DOI: 10.2969/jmsj/79217921

Abstract

Let $F_t$, where $t \in \mathbb{R}$, be an analytic family of plane-to-plane mappings with $F_0$ having a critical point at the origin. The paper presents effective algebraic methods of computing the number of those cusp points of $F_t$, where $0 < |t|\ll 1$, emanating from the origin at which $F_t$ has a positive/negative local topological degree.

Citation

Download Citation

Zbigniew SZAFRANIEC. "On bifurcations of cusps." J. Math. Soc. Japan 71 (2) 555 - 567, April, 2019. https://doi.org/10.2969/jmsj/79217921

Information

Received: 8 November 2017; Published: April, 2019
First available in Project Euclid: 25 February 2019

zbMATH: 07090055
MathSciNet: MR3943450
Digital Object Identifier: 10.2969/jmsj/79217921

Subjects:
Primary: 14P15
Secondary: 58K05

Keywords: bifurcations , cusps , singularities

Rights: Copyright © 2019 Mathematical Society of Japan

Vol.71 • No. 2 • April, 2019
Back to Top