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On bifurcations of cusps
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Abstract. Let F}, where t € R, be an analytic family of plane-to-plane
mappings with Fy having a critical point at the origin. The paper presents
effective algebraic methods of computing the number of those cusp points
of Fy, where 0 < [¢{| < 1, emanating from the origin at which F} has a
positive/negative local topological degree.

1. Introduction.

Mappings between surfaces are a natural object of study in the theory of singularities.
Whitney [29] proved that critical points of such a generic mapping are folds and cusps.
There are several results concerning relations between the topology of surfaces and the
topology of the critical locus of a mapping (see [8], [18], [24], [28], [29]). Singularities
of map germs of the plane into the plane were studied in [10], [11], [13], [21], [22], [25].

Let Fi, where t € R, be an analytic family of plane-to-plane mappings with Fj having
a critical point at the origin. Under some natural assumptions there is a finite family
of cusp points of F; bifurcating from the origin. There are important results [7, Section
6.3], [10, Theorem 3.1], [14, Section 6], [22, Proposition 7.1] concerning the parity of the
number of those points.

In this paper we show how to compute the number of cusps of F}; which are repre-
sented by germs having either positive or negative local topological degree (see Theorem
6.8).

The paper is organized as follows. In Sections 2 and 3, we collect some useful facts.
The curve in R x R? consisting of points (¢, ), where z is a cusp point of F}, is defined by
three analytic equations, so that it is not a complete intersection. In Section 4 we show
how to adopt in this case some more general techniques from [23] concerning curves in
R™ defined by m equations, where m > n.

In Sections 5 and 6, we prove the main result. In Section 7 we present examples
computed by a computer. We have implemented our algorithm with the help of SINGULAR
[6]. We have also used a computer program written by Lecki [19].

2. Mappings between surfaces.

Let (M,0M) and (N, 9N) be compact oriented connected surfaces, and let f : M —
N be a smooth mapping such that f~1(ON) = M. Assume that
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(i) every point in M is either a fold point, a cusp point or a regular point, and there
are only a finite number of cusps which all belong to M \ OM,

(ii) the 1-dimensional manifold consisting of fold points is transverse to M, so that
fIOM : OM — ON is locally stable, i.e. its critical points are non-degenerate.

We shall write M~ for the closure in M of the set of regular points at which f does
reverse the orientation.

If pe M\ OM is a cusp point, we define u(p) to be the local topological degree of
the germ f: (M,p) — (N, f(p)). Put

cusp deg (f) = 3 u(p),

where p runs through the set of all cusp points of f.
Fukuda and Ishikawa [10] have generalized the results by Eliasberg [8] and Quine
[24] concerning surfaces without boundary, proving

THEOREM 2.1. Let M, N and f be as above and OM # (). Then

cusp deg (f) = 2x(M ™) + (deg fIOM)x(N) — x(M) = #C(f|0M)/2,
where C(f|OM) is the set of critical points of f|OM.

In fact, in [10] there is a stronger assumption that both f : M — N and f|OM :
OM — ON are C*-stable mappings. However, if f satisfies (i), (ii), then there exists a
C*°-stable perturbation f , which is arbitrary close to f in C'"°°~-Whitney topology, such
that all corresponding numbers associated to f and f which appear in the above theorem
stay the same.

Let f = (f1,f2) : U — R2 where U C R? is open, be a smooth mapping. Set
J = 0(f1, f2)/0(x1,x2), Gi = O(fi, J)/O(x1,x2), @ =1,2. Applying the same arguments
as in the proof of [17, Proposition 2, p. 815] one gets

PROPOSITION 2.2.  The set of all common solutions in U of the system of equations
J=G1 =Gs =9(G1,J)/0(x1,22) = O(Ga, J)/O(x1,22) = 0 is empty if and only if the
set of critical points of f consists of either fold or cusp points.

If that is the case, then the set of cusp points is discrete and equals {J = G1 = Gy =

0}.

3. Families of germs.

In this section we recall some useful facts concerning 1-parameter families of real
analytic germs.

For r > 0, let D"(r) = {z € R"| ||z|| < r}, and S""1(r) = dD"(r). We shall
write (t,2) = (¢, 21,...,2,) € R x R™. Assume J(¢,2z) : R x R® 0 — R, 0 is an analytic
function defined in a neighbourhood of the origin having a critical point at 0. We shall
write

Lo = {z € §"7'(r)| J(0,2) = 0},
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M, ={xz e D"(r)|J(t,z) <0},

where 0 < |t| < r < 1.

Let F: R x R",0 — R™, 0 be an analytic mapping. Put Fi(x) = F(t,z). Suppose
that there exists a small 7 > 0 such that F;, '(0) N D"(r) = {0}. For 0 < § < r, put
Sr=1(8) = F7Y(S™1(8)) N D™(r) and D(6) = F; 1(D™(8)) N D™(r). We shall write

Lo={o e 537(6)| J(0,2) = 0},
M; ={z € D}(5)| J(t,x) < 0},
where 0 < |t| < § < 1.
LEMMA 3.1.  We have x(M;") = x(M;") and x(Lo) = x(Lo).

PROOF. There exist small positive §; < da, 71 < 73 and tg, such that for 0 < [¢| <
to we have

{z € Df(él) | J(t,x) <0} C {x € D(ry)| J(t,z) <0}
C {xz € DM&y) | J(t,x) <0} C {x € D(ra) | J(t,x) <0},
and inclusions
{z € 13?(51) | J(t,x) <0} C {xz € D?(ég) | J(t,z) <0},
{r € D(r)|J(t,x) <0} C {x € D(ra)| J(t,z) <0}
induce isomorphisms of corresponding homology groups. Then
X(M;7) = x({ € D(61) | J(t, ) < 0})
=x({z € D(r2) | J(t, ) < 0}) = x (M)
The proof of the second assertion is similar. O

Define a mapping dy : R?,0 — R™, 0 by

and mappings dy,ds : R x R”,0 — R x R™, 0, by

aJ aJ aJ
R R O - o) §

dalt, ) = (J<t,x>,§;<t,x>,...,£<t,x>) ,

respectively. Applying directly results by Fukui [12] and Khimshiasvili [15], [16] we get

THEOREM 3.2.  Suppose that the origin is isolated in dy*(0), dy*(0) and dy*(0),
so that the local topological degrees degq(dy), degg(di) and degg(ds) are defined.
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Then both J(0,2) and J(t,x) have an isolated critical point at the origin. If 0 # ¢
is sufficiently close to zero, then we have

X(M;7) = x(M;7) = 1 — (degg(do) + dego (d1) + sign(t) - degg (dz)) /2.

If n is even, then we have x(Lo) = x(Lo) = 2- (1 — degy(do)), and if n is odd, then
X(Lo) = 0. In particular, if n = 2, then Lg is finite and #Lo =2 - (1 — degq(dp)).

It is proper to add that there exists an efficient computer program which can compute
the local topological degree (see [19]).

4. Number of half-branches.

In this section we shall show how to adopt some techniques developed in [23], [26],
[27] so as to compute the number of half-branches of an analytic set of dimension < 1
emanating from a singular point.

Let Opt1 = R{t,z1,...,2,} denote the ring of germs at the origin of real analytic
functions. If I is an ideal in Oy,41, let V(I) C R x R™ denote the germ of zeros of I near
the origin, and let V() C C x C™ denote the germ of complex zeros of I.

REMARK 4.1. If I is proper, then dimg O,,+1/I < oo if and only if Vi(I) = {0}.

Let wy,...,wy € Ont1, where m > n, be germs vanishing at the origin. We shall
write (wy, ..., wy,) for the ideal in 0,11 generated by w1, ..., Wn.
Let W C 0,41 denote the ideal generated by wq,...,w,, and all n X n-minors of

the Jacobian matrix of the mapping germ (ws,...,wy) : R x R™",0 — R™, 0. The ideal
W is proper if and only if the rank of this matrix at the origin is < n — 1.

If V(W) = {0}, then by the implicit function theorem the germ V(wy, ..., wy,) is
of dimension < 1, so that this set is locally a union of a finite family of half-branches
emanating from the origin. We shall say that V(ws,...,wy) is a curve having an alge-
braically isolated singularity at the origin if W is proper and dimg O,+1/W < co.

From now on we shall assume that m = 3 and n = 2. Let M (3,3) denote the space
of all 3 x 3-matrices with coefficients in R. By [23, Theorem 3.8] and comments in [23,
p. 1012] we have

THEOREM 4.2.  Assume that V(wy,ws,ws) is a curve having an algebraically iso-
lated singularity at the origin. There exists a proper algebraic subset ¥ C M(3,3) such
that for every non-singular matriz [as;] € M(3,3)\ 2 and gs = as1w1 + as 2w2 + a5 3ws,
where 1 < s < 3, the set V(g1,92) is a curve having an algebraically isolated singularity
at the origin and V (w1, wa, w3) = V (g1, 92,93) C V(91, 92)-

If that is the case and J, = (g1, g2, %), where p = 1,2, then we have J» C Jy and
dimR(Jl/Jg) < 0.

If V(wy,we) is a curve having an algebraically isolated singularity at the origin, then
one can take gs = ws.

From now on we shall assume that
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dimp (’)3/<t,g17gg> < 0. (1)

As dimg(J1/J2) < 0o and ¢3(0) = 0, then by the Nakayama lemma & = min{s | ¢* - g3 €
Ja} is finite. (In [27] there are presented effective methods for computing this number.)
Let k > £ be an even positive integer.

Now we shall adopt to our case some arguments presented in [27, pp. 529-531].
There are germs hq, ha, hy € O3 such that

t°93 = h1g1 + haga + hag3.

Let Yo = Ve(g1,92) \ Ve (g3). By (1), the germ ¢* does not vanish at points in Ve (g1, 92) \
{0}. If (¢t,x1,22) = (t,x) € Y¢ lies sufficiently close to the origin, then |h3(t,x)| < M for
some M >0, g1(t,z) = g2(t,z) = 0 and g¢3(¢,x) # 0. Hence

lgs(t,2)| > [t1*/M > [t[*.

Then the origin is isolated in both V(g3 & t*, g1, go).

Take (t,z) € V(g1,92) \ {0} near the origin. By (1), t # 0. If g3(t,x) # 0, then
g3(t, ) £ t* has the same sign as g3(t,z). If gs(t,) = 0, then g3(t,2) +t* > 0 and
gs(t,r) —t* < 0. Write b, (resp. b_, by) for the number of half-branches of V (g1, g2) on
which g3 is positive (resp. gs is negative, g3 vanishes). Put

(g3 £ t*
H:t = (93 791792)791792 :R370_>R370'
8(t, T, .132)
By [26, Theorem 3.1] or [27, Theorem 2.3], the origin is isolated in both H:'(0) and

by +bo — b =2 dego(H),
by —by—b_ =2 degy(H-).

THEOREM 4.3.  If dimg O3/(t, g1, g2) < 00, then the number by of half-branches of
V(wy,we,ws) emanating from the origin equals dego(Hy) — dego(H-).

PROOF. As the matrix [ay;] is non-singular, then V (w1, w2, ws) = V (g1, 92, 93)-
Of course, by equals the number of half-branches of V (g1, g2, g3). Moreover,

by = %((bJr +bo —b1) — (by — by — br)) = dego(Hy) — dego(H-). =

Now we shall explain how to compute the number of half-branches of V' (w1, wa, ws3)
in the region where ¢ > 0.

PROPOSITION 4.4.  Put gl(t,z) = ¢;(t*,z). Then dimg O3/(t,g},g5) < oo and
V (g1, g5) has an isolated singularity at the origin.

Proor. By (1), as Vi(t,91,92) = {0} then Vi(t, g1, 95) = {0}. By Remark 4.1,
dimg O3/(t, ¢}, g5) < co. We have
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(g, 95)
o(t, zp)

9(gi, 95)

0(9i,95)
a(xh .’L'Q)

_ 9(9i,95)
a(t,xp) (tvx) 7@2739))

(t,z) =2t = B, 22)

(#,2),

and then V' (g1, g5) is a curve having an algebraically isolated singularity at the origin. [

REMARK 4.5.  Let J, = (g1, 95, (95)7). Put & = min{s | t*- g5 C J3}. Of course,
¢<2-¢&

Applying the same methods as above, one can compute the number bj of half-
branches of V(gi,gh,9%). Obviously b;/2 equals the number of half-branches of
V (w1, ws,w3) lying in the region where ¢ > 0.

Other methods of computing the number of half-branches were presented in [1], [2]
(3], [4], [5], [9], [20]. According to Khimshiashvili [15], [16], if a germ f : R?,0 — R,0
has an isolated critical point at the origin, then the number of real half-branches in
F710) equals 2 - (1 — degg(Vf)), where V£ : R? 0 — R?,0 is the gradient of f.

5. Mappings between curves.

In this section we give sufficient conditions for a mapping between some smooth
plane curves to have only non-degenerate critical points.

Let f = (f1, f2) : R — R? be a smooth mapping. Put g = fZ + f2. Assume that
82 > 0 is a regular value of g and P = g~!(6%) is non-empty, so that P is a smooth
curve. Obviously, P = f~1(S'(8)) and f|P : P — S*(§) is a smooth mapping between
1-dimensional manifolds.

At any p € P the gradient Vg(p) = (0g9/0z1(p),dg/0x2(p)) is a non-zero vector
perpendicular to P, and the vector T'(p) = (—0g/0x2(p), 0g/0x1(p)) obtained by rotating
Vg(p) counterclockwise by an angle of 7/2 is tangent to P. This way T : P — R? is a
non-vanishing tangent vector field along P.

Take p € P. There exists a smooth mapping x(t) = (21(t), 22(t)) : R — P such that
2(0) = p and 2'(t) = T(x(t)). Hence

Z)(t) = —2- (flgj; +f2§ﬁ)

0 0
() = 2. (faj:+f5f)

((t))

: (2)
(2()

As g(z(t)) = 2%, then f(z(t)) = (dcosf(t),dsinf(t)) for some smooth function
0 :R,0 — R. Of course, (dcosf(0),dsiné(0)) = f(x(0)) = f(p). Applying the complex
numbers notation we can write

§- e = f(x(t)) +ifa(x(t)), wherei=+/—1. (3)
Put J = 8(f1,f2)/8(331,l‘2) and Gj = 8(fj,.])/8(a:1,x2), where j = 1,2.

LEMMA 5.1. A point p € P is a critical point of f|P : P — SY(3) if and only if
J(p) =0.
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PROOF. By (2), the derivative of the equation (3) equals

. i of1 o1 . (Of2 Of2
/10 / / . / /
iod -e (81 1+82 )—1—1 (axlxl—i—@xQxQ)

= 2i(f1 +ifa)-J =2i6-€J.
So p € P is a critical point of f|P if and only if §’(0) = 0, i.e. if J(p) = 0. O
LEMMA 5.2.  Suppose that p € P is a critical point of f|P: P — S'(8). Then
sign (0”(0)) = sign (f1- G1+ f2- G2)l,,.-

In particular, a point p € P is a non-degenerate critical point of f|P: P — S1(3) if and
only if J(p) =0 and (f1-G1+ f2-G2)|, # 0.

ProOOF. Since §(0) = 0 and J(p) = 0, after computing the second derivative of
(3) the same way as above one gets

: ; oJ aJ
: /"0 . i0 ! /
) —9i5.¢60. [ ZL g7
id0" e |0 id-e ( o x) + s xg) )
= 416'€i0(0)'(?1'G1—|—12'G2)‘p. O

LEMMA 5.3. Let f = (f1,f2) : R2,0 — R2 0 be an analytic mapping such that
J(0) =0, and the origin is isolated in both f~1(0) and VJ~1(0).

If0 <8 < r <1, then SY(8) = D(r) N f~Y(SY(0)) is diffeomorphic to a circle,
D2(8) = D(r) N f~1(D?(8)) is diffeomorphic to a disc, and f : S*(5) — S'() has only
non-degenerate critical points. Moreover the one-dimensional set J=1(0) consisting of
critical points of f is transverse to S*(6).

PROOF. If the origin is isolated in J~1(0), then f|R?\ {0} is a submersion near
the origin, and so f : S*(6) — S*(4) has no critical points.

In the other case, J=!(0) \ {0} is locally a finite union of analytic half-branches
emanating from the origin. Let B be one of them. The gradient V.J(p) is a non-zero
vector perpendicular to 1}, B at any p € B.

The origin is isolated in f~1(0). By the curve selection lemma one can assume that
(f? + f2)|B has no critical points, so that V.J and

V(2 L2 = (2f13fl+2f23f2 2f16f1 2f23f2)

are linearly independent along B. Then

O, f1)
(w1, 2)

along B. By previous lemmas, f : ! (8) — S1(8) has only non-degenerate critical points.
Other assertions are rather obvious. O

+2f2M =-2(fi-Gi1+ f2-G2)

0+4VJIxV(fP+ f2) =2f 0(x1,x2)
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6. Families of self-maps of R2.

In this section we investigate 1-parameter families of plane-to-plane analytic map-
pings.

Let F = (f1, f2) : Rx R?,0 — R?,0 be an analytic mapping defined in a neighbour-
hood of the origin. We shall write F;(z1,z2) = F(t,z1,x2) for ¢ near zero. Define three
germs R x R2,0 — R by

J: (9(.1617.102)7 Gz — a(f’L?J) , Z: 1,2.
8(33‘1,332) 8(.1‘1,.132)
Put Ji(z1,22) = J(t, 21, 22).
From now on we shall also assume that

dimR O3/<t7f1af2> < 00, dlmR O3/<t;G1aG2> < 00,
4
J(0) =0, dimRO3/<t 0J 8J><oo, @)

’ 8:61 ’ 8%2

i.e. the origin is isolated in both ({0} x C?) N V(fy, f2) and ({0} x C?) N V¢(Gy,Ga),
and Jy has an algebraically isolated critical point at the origin.

LEMMA 6.1. Let Q = Os/(t,J,G1,Ga). Then dimg Q < oo, i.e. the origin is
isolated in ({0} x C?) N Ve(J, Gy, Ga).

PrOOF. Of course <t, Gy, G2> C <t, J, G, G2> Then dimg @ <dimg Og/(t, G, G2> <
Q. g

We shall write g = f2 + f2 and g;(x1,72) = g(t,71,22). There exists a small ry > 0
such that F; '(0) N D?(ro) = {0}. For [t| < § < ro, put S}(8) = F, 1 (S'(8)) N D2(rg)
and D2(0) = F7H(D?(8)) N D?(ro). If 62 is a regular value of go|D?(ro), then it is
also a regular value of g;|D2(ro). If that is the case, then S}(d) is diffeomorphic to
53(8) ~ 8(1). By the same argument, D?(4) is diffeomorphic to D2(8) ~ D?(1).

By Lemmas 5.2, 5.3 we get

LEMMA 6.2.  Critical points of Fy : S(0) — SY(8) are non-degenerate, and
C(Fo|S5(8)) = S5(8) N {Jo = 0}. i

For t near zero, critical points of F, : S}(8) — S1(8) are non-degenerate too, and
the number of critical points #C(F;|S}(8)) equals #(S§(8) N {Jy = 0}). Moreover the
set of critical points of Fy, i.e. J;1(0), is transverse to S}(9).

Let I denote the ideal in the ring O3 generated by J, G, Go, and let V(I) C R x R?
denote a representative of the germ of zeros of I near the origin. By Lemma 6.1, there
exists 0 < § < 1 such that {0} x D3(8) NV (I) = {0}, and {t} x S}(6) NV (I) =0 for t
sufficiently close to zero. Put ¥, = {z € D?(8) | (t,x) € V(I)}. Hence ¥y = {0} and %,
is contained in the interior of D?().

Let I' denote the ideal in O3 generated by germs J, Gy, Ga, (G, J)/0(x1,x2) and
(G, J)/d(x1, ). Suppose that V(I') = {0}. Hence {t} x D?(8) NV (I') is empty for
0 = t close to zero. By Proposition 2.2 one gets
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LEMMA 6.3.  Suppose that 0 < § < 1 and 0 # t is sufficiently close to zero. Then
the set of critical points of Fy : D?(8) — D?(8) consists of fold points, and a finite family
¥y of cusp points.

REMARK 6.4. By [10, Theorem 3.1}, if 0 # ¢ is sufficiently close to zero, then
#3; < dimg Q and #X; = dimg @ mod 2.

For t # 0 we shall write ©F = {z € ¥, | ps(z) = £1}, where y(z) is the local
topological degree of I at z. Put cusp deg(Fy) = > o5, i(z) = #3F — #¥7. By
Lemmas 5.3, 6.2, 6.3 and Theorem 2.1 we get

PROPOSITION 6.5.  Suppose that 0 < § < 1, and 0 # t is sufficiently close to zero.
Then

(i) the pair (D2(5),51(8)) is diffeomorphic to (D?(1),S*(1)), and F; : D?(6) — D?(6)
is a mapping such that F; '(S*(8)) = SL(9),

(ii) every point in th(é) is either a fold point, a cusp point or a regular point, and
there is a finite family of cusps which all belong to D?(3) \ SZ(9),

(iii) Fy|S} = SH() — SL(6) is locally stable, and the set of critical points of Fy, i.e.
J7H0), is transverse to SL(9),

(iv) cusp deg(F;) = 2x(M;") + deg(F;|S}(8)) — 1 — #C(F,|St(8))/2

= 2x(M;) + degy(Fo) — #C(Fo|S5(6))/2 — 1,

where V™ = {w € D2(6) | Ji() < 0},
Let dy,d> : R x R2,0 — R x R?, 0 be defined as in Section 3.

THEOREM 6.6. Let F' = (f1, fo) : RxR2 0 — R2,0 be an analytic mapping defined
in a neighbourhood of the origin such that (4) holds. Suppose that the origin is isolated
in V(I'), d71(0) and d;*(0).

Then there exists r > 0 such that the set of critical points of Fy : D*(r) — R?, where
0 # t is sufficiently close to zero, consists of fold points, and a finite family X; of cusp
points. Moreover, the origin is isolated in Fy *(0) and

cusp deg(F;) = degq(Fp) — degg(dy) — sign(t) - degg(da).

PROOF.  For any small § > 0 there is r > 0 such that D?(r) ¢ DZ(5) \ S§(6), so
that also D?(r) € D2(9) \ S}(9) if |¢| is small.

By Lemma 6.3, the set of critical points of F|D2(J) consists of fold points, and a
finite family ; of cusp points. Because ¥y = {0} then X, is the set of cusp points of
Fy|D?(r).

By (4), the germ dy = V.Jo : R?2,0 — R? 0 has an isolated zero at the origin. By
Theorem 3.2 and Lemma 6.2, we have
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#C(F,|SH(8)) = #(S5(0) N {Jo = 0}) = 2 (1 — degy(do)),

for 0 # t sufficiently close to zero. Our assertion is then a consequence of Proposition
6.5 and Theorem 3.2. O

Put J/ = J(tQ,xl,xQ), G; = Gi(t2,$1,$2), 1= 1,2

LEMMA 6.7.  Suppose that V(I') = {0}. Then dimV(J,G1,G2) < 1 and
dimV(J',G},Gh) < 1.

Moreover, if dimg O3/I' < oo, then V(J',G},GY), as well as V(J,G1,G2), is a
curve having an algebraically isolated singularity at the origin.

PrOOF. We have

{0} =V(I') = V(J,G1,Ga) NV (6(G1’ J) UGy, J))

(w1, x2)" O(1,22)

so by the implicit function theorem dimV(J,G1,G2) < 1. Of course, (t,z1,22) €
V(J',G},GY) if and only if (t?,z1,22) € V(J,G1,G2). Hence dimV (J',G},G) < 1
too.

The ideal

8( ! J’) 3( ! J’)>
K = J/,G/, /7 1 , 2 coO
< V2 0y, @) 0w, 72) ’

is contained in the ideal L generated by J', G}, G} and all 2 X 2-minors of the derivative
matrix of (J', G, GY).

As dimg O3 /I’ < 00, by the local Nullstellensatz, the origin is isolated in the set of
complex zeros of I’. Since

G ")
8(‘%1, x2)

O(x1,x2)

(t,l‘l,.’lﬁ‘g) = (t2,$1,.’152),

the origin is isolated in the set of complex zeros of K. Hence dimg O3/L < dimg O3/K <
oo, and then V(J', G, GY) is a curve having an algebraically isolated singularity at the
origin. The proof of the last assertion is similar. O

Suppose that the origin is isolated in V(I"). Let by (resp. bj) be the number of half
branches in V(J, G1,Ga) (resp. V(J', G}, G5)) emanating from the origin.

By Lemma 6.1, no half-branch is contained in {0} x R%. Then by the curve selection
lemma the family of half-branches is a finite union of graphs of continuous functions
t — 2'(t) € R?, where t belongs either to (—¢,0] or to [0,¢), 0 < ¢ < 1, 2(0) = 0,
1< <by (resp. 1 <i <bp), and those graphs meet only at the origin.

Hence, if 0 < t < 1, then we have

bo = #5i + #E_y = #5 + #X; +#55,+ 57,
0/2 = #Xp = #3 + #3, .

By Theorem 6.6, we have
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degg (Fo) — degg(d1) — degg(dz) = #Zj — #X;,
degy (Fo) — dego(d1) + degy(ds) = #5F, — #37,.

Then we have

THEOREM 6.8.  Suppose that assumptions of Theorem 6.6 hold. Then numbers
#¥E. where t > 0 is small, are determined by by, b), dego(Fp), degg(dy) and degg(ds).

Moreover, if dim O3 /1" < oo, then V(J,G1,G3) and V(J', G}, GS) are curves having
an algebraically isolated singularity at the origin. In that case one can apply Theorem
4.3 so0 as to compute by and by. In particular, if dimpOs/I" < 0o, where

I”<G1 Gy 0(G1,G2) 0(G1,G9) 8(G1,G2)>

8(t,l‘1) ’ 8(t,l‘2) 78(3?1,332)

then V(G1,G2) is a curve having an algebraically isolated singularity at the origin. In
that case one can take g1 = G1, go = G2, g3 = J.

7. Examples.

Examples presented in this section were calculated with the help of SINGULAR [6]
and the computer program written by Andrzej Lecki [19].

EXAMPLE 7.1.  Let F = (f1, f2) = (23 +23+tx1, 2122). Since dimg O3/(t, f1, f2) =
5, dimg O3/(t,G1,G2) = 7 and dimg O3/(t,0J/0x1,0J/0x2) = 2, (4) holds. More-
over, we have dimg O3/I' = 8, dimg O3/(0J/0t,0J /0x1,0J /0x2) = 1, and dimg O3/ (J,
d.J/0x1,0J/dx3) = 3. Then the origin is isolated in V(I"), d;*(0) and d; '(0). Using
the computer program by Lecki one can compute degg(Fp) = —1, degg(di) = +1 and
degqy(dy) = —1. By Theorem 6.6, cusp deg(F;) = sign(¢) — 2 for 0 # ¢ sufficiently close
to zero.

By Lemma 6.7, the set V(J,G1,G2), as well as V(J', G|, G}), is a curve having an
algebraically isolated singularity at the origin. Hence we can apply techniques presented
in Section 4 so as to compute the number of half-branches of those curves.

One can verify that dimg O3/I" = 8, so that V(G1,G2) is a curve with an alge-
braically isolated singularity at the origin.

Put J, = (G1,G2,J?), where p = 1,2. In that case £ = 2, and so k = 4. As
dimg O3/(t, G1,G2) < 0o, then (1) holds. Set

. — 8(J:i:t47G1,G2)
= o(t, w1, x2)

,Gl,G2> :R%,0 = R3,0.

One can compute deggy(H4) = +2, degg(H_) = —2. By Theorem 4.3, V(J,G1, G2)
is a union of four half-branches emanating from the origin, i.e. by = 4.

Now we shall apply the same techniques so as to compute the number of half-
branches of V' (J', G}, G%). By Proposition 4.4, V (G}, G%) is a curve with an algebraically
isolated singularity at the origin. Put J), = (G, G%, (J')P), where p = 1,2. By Remark
4.5, £’ < 4 and so one can take k = 6. Let
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a(J £15 .G, GY)

H = L 22 GG ) (R0 - R30.

+ < 8(t,x1,x2) 1) M2 ) )

One can compute degg(H' ) = +1, degg(H’) = —1. Then V(J',G',GY) is a union of
two half-branches emanating from the origin, i.e. /2 = 1. Hence, if 0 < ¢ < 1, then
#X =0, #3, =1, #37, =0 and #X°, = 3.

EXAMPLE 7.2. Let F = (f1, f2) = (2 + 23 + 2323 + txy, 2172 + txa). In that
case dimR 03/<t, fl, f2> = 8, dimR 03/<t, G1, G2> = 24, dimR O3/<t, 8J/(9$1, BJ/8$2> =
9, dimg O3/I' = 33, dimg O3/(0J/0t,0.J /dx1,0J/0x2) = 3, and dimg O3/(J,d.J/0x1,
0J /Ox3) = 12. Then the origin is isolated in V'(I"), d; *(0) and d; *(0). One can compute
degqy(Fp) =0, degg(d1) = +1 and degg(ds) = 0. By Theorem 6.6, cusp deg(F;) = —1 for
0 # t sufficiently close to zero, i.e. #X; — #%; = —1.

As dimg O3/1" = 45 then V(G1, G>) is a curve having an isolated singularity at the
origin. Let J, be defined the same way as in the previous example. One can verify that
& =2,and so k =4. Put

. (00 £11,G1.Gy)
= o(t, z1,22)

,Gl,G2> : R3,O — RB,O.

One can compute degg(H;) = 0, degg(H-) = —2. Then V(J,G1,G2) is an union of two
half-branches emanating from the origin, i.e. by = 2.

Because Fy(r1,22) = F_i(—x1,—x2), then b)/2 = 1 and #X; = #X7,, #%; =
#37,. So in this case there is no need to compute degy(H’.). Hence, if ¢ > 0, then
#NF =#0T, =0and #3; = #X7, = 1.
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