Open Access
April, 2017 Contact of a regular surface in Euclidean 3-space with cylinders and cubic binary differential equations
Toshizumi FUKUI, Masaru HASEGAWA, Kouichi NAKAGAWA
J. Math. Soc. Japan 69(2): 819-847 (April, 2017). DOI: 10.2969/jmsj/06920819

Abstract

We investigate the contact types of a regular surface in the Euclidean 3-space $\mathbb{R}^3$ with right circular cylinders. We present the conditions for existence of cylinders with $A_1$, $A_2$, $A_3$, $A_4$, $A_5$, $D_4$, and $D_5$ contacts with a given surface. We also investigate the kernel field of $A_{\ge 3}$-contact cylinders on the surface. This is defined by a cubic binary differential equation and we classify singularity types of its flow in the generic context.

Citation

Download Citation

Toshizumi FUKUI. Masaru HASEGAWA. Kouichi NAKAGAWA. "Contact of a regular surface in Euclidean 3-space with cylinders and cubic binary differential equations." J. Math. Soc. Japan 69 (2) 819 - 847, April, 2017. https://doi.org/10.2969/jmsj/06920819

Information

Published: April, 2017
First available in Project Euclid: 20 April 2017

zbMATH: 1371.53004
MathSciNet: MR3638286
Digital Object Identifier: 10.2969/jmsj/06920819

Subjects:
Primary: 53A05 , 53A60 , 58C27 , 58K05

Keywords: contact with cylinders , cylindrical directions , Monge cubic

Rights: Copyright © 2017 Mathematical Society of Japan

Vol.69 • No. 2 • April, 2017
Back to Top