Open Access
April, 2016 Special Lagrangian submanifolds invariant under the isotropy action of symmetric spaces of rank two
Kaname HASHIMOTO, Katsuya MASHIMO
J. Math. Soc. Japan 68(2): 839-862 (April, 2016). DOI: 10.2969/jmsj/06820839

Abstract

We study special Lagrangian submanifolds of the cotangent bundle $T^*S^n$ of the sphere in the tangent space of Riemannian symmetric space of rank two. We show that the special Lagrangian submanifolds correspond to the solution of a differential equation on $\mathbb{R}^2$ under the assumption that the submanifold is of cohomogeneity one. Our result is the generalization of the former work of Sakai and the first author [5]. We study the qualitative properties of the solution for the special Lagrangian submanifolds and give some examples.

Citation

Download Citation

Kaname HASHIMOTO. Katsuya MASHIMO. "Special Lagrangian submanifolds invariant under the isotropy action of symmetric spaces of rank two." J. Math. Soc. Japan 68 (2) 839 - 862, April, 2016. https://doi.org/10.2969/jmsj/06820839

Information

Published: April, 2016
First available in Project Euclid: 15 April 2016

zbMATH: 1348.53060
MathSciNet: MR3488149
Digital Object Identifier: 10.2969/jmsj/06820839

Subjects:
Primary: 53C38

Keywords: Calabi–Yau manifold , Calibration , cohomogeneity one action , minimal hypersurface , special Lagrangian submanifold

Rights: Copyright © 2016 Mathematical Society of Japan

Vol.68 • No. 2 • April, 2016
Back to Top