Open Access
April, 2016 Classification of conformal minimal immersions of constant curvature from $S^2$ to $Q_3$
Mingyan LI, Xiaoxiang JIAO, Ling HE
J. Math. Soc. Japan 68(2): 863-883 (April, 2016). DOI: 10.2969/jmsj/06820863

Abstract

In this paper, we study geometry of conformal minimal two-spheres immersed in complex hyperquadric $Q_3$. We firstly use Bahy-El-Dien and Wood's results to obtain some characterizations of the harmonic sequences generated by conformal minimal immersions from $S^2$ to $G(2,5;\mathbb{R})$. Then we give a classification theorem of linearly full totally unramified conformal minimal immersions of constant curvature from $S^2$ to $G(2,5;\mathbb{R})$, or equivalently, a complex hyperquadric $Q_3$.

Citation

Download Citation

Mingyan LI. Xiaoxiang JIAO. Ling HE. "Classification of conformal minimal immersions of constant curvature from $S^2$ to $Q_3$." J. Math. Soc. Japan 68 (2) 863 - 883, April, 2016. https://doi.org/10.2969/jmsj/06820863

Information

Published: April, 2016
First available in Project Euclid: 15 April 2016

zbMATH: 1357.53069
MathSciNet: MR3488150
Digital Object Identifier: 10.2969/jmsj/06820863

Subjects:
Primary: 53C42 , 53C55

Keywords: ‎classification‎ , complex hyperquadric , conformal minimal immersion , Gauss curvature , Kähler angle

Rights: Copyright © 2016 Mathematical Society of Japan

Vol.68 • No. 2 • April, 2016
Back to Top