Translator Disclaimer
October, 2015 Minkowski content of the intersection of a Schramm-Loewner evolution (SLE) curve with the real line
Gregory F. LAWLER
J. Math. Soc. Japan 67(4): 1631-1669 (October, 2015). DOI: 10.2969/jmsj/06741631

Abstract

The Schramm-Loewner evolution (SLE) is a probability measure on random fractal curves that arise as scaling limits of two-dimensional statistical physics systems. In this paper we survey some results about the Hausdorff dimension and Minkowski content of ${\rm SLE}_\kappa$ paths and then extend the recent work on Minkowski content to the intersection of an SLE path with the real line.

Citation

Download Citation

Gregory F. LAWLER. "Minkowski content of the intersection of a Schramm-Loewner evolution (SLE) curve with the real line." J. Math. Soc. Japan 67 (4) 1631 - 1669, October, 2015. https://doi.org/10.2969/jmsj/06741631

Information

Published: October, 2015
First available in Project Euclid: 27 October 2015

zbMATH: 1362.60069
MathSciNet: MR3417507
Digital Object Identifier: 10.2969/jmsj/06741631

Subjects:
Primary: 60J67

Rights: Copyright © 2015 Mathematical Society of Japan

JOURNAL ARTICLE
39 PAGES


SHARE
Vol.67 • No. 4 • October, 2015
Back to Top