Open Access
April, 2015 Nontrivial attractor-repellor maps of $S^2$ and rotation numbers
Shigenori MATSUMOTO
J. Math. Soc. Japan 67(2): 477-501 (April, 2015). DOI: 10.2969/jmsj/06720477

Abstract

We consider an orientation preserving homeomorphism $h$ of $S^2$ which admits a repellor denoted $\infty$ and an attractor $-\infty$ such that $h$ is not a North-South map and that the basins of $\infty$ and $-\infty$ intersect. We study various aspects of the rotation number of $h:S^2\setminus\{\pm\infty\}\to S^2\setminus\{\pm\infty\}$, especially its relationship with the existence of periodic orbits.

Citation

Download Citation

Shigenori MATSUMOTO. "Nontrivial attractor-repellor maps of $S^2$ and rotation numbers." J. Math. Soc. Japan 67 (2) 477 - 501, April, 2015. https://doi.org/10.2969/jmsj/06720477

Information

Published: April, 2015
First available in Project Euclid: 21 April 2015

zbMATH: 1351.37180
MathSciNet: MR3340183
Digital Object Identifier: 10.2969/jmsj/06720477

Subjects:
Primary: 37E30
Secondary: 37E45

Keywords: attractor , prime ends , repellor , rotation number

Rights: Copyright © 2015 Mathematical Society of Japan

Vol.67 • No. 2 • April, 2015
Back to Top