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Abstract. We consider an orientation preserving homeomorphism h of
S2 which admits a repellor denoted ∞ and an attractor −∞ such that h is
not a North-South map and that the basins of ∞ and −∞ intersect. We
study various aspects of the rotation number of h : S2 \ {±∞} → S2 \ {±∞},
especially its relationship with the existence of periodic orbits.

1. Introduction.

Let h be a homeomorphism of the 2-sphere S2. A fixed point a of h is called an attrac-
tor if there is an open disk V containing a such that h(Cl(V )) ⊂ V and

⋂
i∈N hi(V ) = {a}.

For such V , the set Wa =
⋃

i∈N h−i(V ) is called the basin of a. A point x of Wa is char-
acterised by the property: limi→∞ hi(x) = a. An attractor b of the inverse h−1 is called
a repellor of h, and its basin Wb is defined likewise. The basins are invariant by h and
homeomorphic to open disks.

Let ∞ and −∞ be distinct points of S2.

Definition 1.1. A homeomorphism h of S2 which satisfy the following conditions
is called a nontrivial attractor-repellor map.

(1) h is orientation preserving.
(2) −∞ is an attractor of h with basin W−∞ and ∞ a repellor with basin W∞.
(3) Z = S2 \ (W−∞ ∪W∞) is nonempty.
(4) W−∞ ∩W∞ 6= ∅.

Condition (3) is equivalent to saying that h is not a North-South map. Condition
(4) is equivalent to saying that there is no h-invariant continuum separating −∞ and ∞.
Denote by H the set of nontrivial attractor-repellor maps.

Let W ∗
±∞ = W±∞∪∂W ∗

±∞ be the prime end compactification of W±∞, where ∂W ∗
±∞

is the set of prime ends of W±∞. The homeomorphism h ∈ H induces a homeomorphism
h∗±∞ of W ∗

±∞. See Section 2 for more details.
The open annulus A = S1 × R is identified with S2 \ {±∞} in such a way that the

end S1 × {±∞} is identified with the deleted point ±∞. Then h induces an orientation
and end preserving homeomorphism of A, which we still denoted by h. The set U±∞ =
W±∞ \ {±∞} is considered to be a subset of A. Denote U∗

±∞ = W ∗
±∞ \ {±∞}.
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The universal covering space of U±∞ is defined as the set of the homotopy classes
of paths from the base point, and is considerd to be simultaneously a subspace of Ã, the
universal covering space of A and of Ũ∗

±∞, the universal covering space of U∗
±∞.

Denote the both covering maps by π : Ã → A and π : Ũ∗
±∞ → U∗

±∞. The inverse
image π−1(U±∞) is simultaneously considered to be a subspace of Ã and of Ũ∗

±∞.
Fix once for all a lift h̃ : Ã→ Ã of h. Corresponding to h̃, a lift h̃∗±∞ : Ũ∗

±∞ → Ũ∗
±∞

of h∗±∞ is specified in such a way that they coincide on π−1(U±∞) under the above
identification.

The rotation number (taking value in R) of the restriction of h̃∗±∞ to the boundary
∂Ũ∗

±∞ = π−1(∂U∗
±∞) is called the prime end rotation number of h̃ at ±∞ and is denoted

by rot(h̃,±∞).
In [13] it is shown that if one of the prime end rotation numbers, say rot(h̃,∞) of

h ∈ H is rational, then there are periodic points in Z. In [9] a partial converse is shown:
if rot(h̃,∞) is irrational and if the point −∞ is accessible from W∞, then there is no
periodic points in Z. The second condition means that there is a path γ : [0, 1] → S2

such that γ([0, 1)) ⊂ W∞ and γ(1) = −∞. Our first result shows that the accessibility
condition is actually necessary, contrary to a conjecture therein.

Theorem 1.2. Given any real numbers α and β, there is a homeomorphism h ∈ H
with its lift h̃ such that rot(h̃,∞) = α and (h̃,−∞) = β.

The accessibility condition is necessary since if we choose α to be rational and β

irrational, there is a periodic point ([13]) and thus the irrationality of one prime end
rotation number does dot imply the nonexistence of periodic point.

A nontrivial attractor repellor map h has a structure similar to a gradient flow. Most
relevant to this structure is the chain recurrent set C of h. Except ±∞, C is contained
in Z, and partitioned into the union of chain transitive classes. Each chain transitive
class is closed and h-invariant. See Section 3 for a review of these concepts.

The example in Theorem 1.2 constructed in Section 2 shows that Poincaré-Birkhoff
type theorem does not hold for h ∈ H. But when restricted to a single chain transitive
class, we get a variant of it.

We consider h to be a homeomorphism of the annulus A, and fix a lift h̃ : Ã→ Ã of
h. Then for any h-invariant probability measure µ of Z, the rotation number rot(h̃, µ) is
defined as follows. Denote by Π1 : Ã→ R the projection onto the first factor. Then the
function Π1 ◦ h̃− Π1 is invariant under the covering transformations, and hence defines
a function on A. We set

rot(h̃, µ) = 〈µ,Π1 ◦ h̃−Π1〉.

For a periodic point x of h, we denote by rot(h̃, x) the rotation number rot(h̃, µ) for µ

the average of the point masses along the orbit of x.

Theorem 1.3. Suppose x1 and x2 are periodic points of h belonging to the same
chain transitive class C0 such that rot(h̃, xν) = αν (ν = 1, 2). Then for any rational
number α ∈ [α1, α2] there is a periodic point x in C0 such that rot(h̃, x) = α.
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Let us define the rotation set rot(h̃, C0) of a chain transitive class C0 as the set
of the values rot(h̃, µ), where µ runs over the space of h-invariant probability measures
supported on C0. The rotation set is a closed interval or a singleton.

Corollary 1.4. Suppose C0 is a chain transitive class with rot(h̃, C0) = [α1, α2],
where αν are distinct rational numbers. Then for any rational number α ∈ [α1, α2] there
is a periodic point x in C0 such that rot(h̃, x) = α.

The proof of Theorem 1.3 and Corollary 1.4, as well as an example of h ∈ H which
shows that Theorem 1.3 is nonvoid is given in Section 3. The author cannot improve
Corollary 1.4 so as to include the case where αν is irrational.

Next we study an influence of the prime end rotation number rot(h̃,∞) on the
dynamics of h on Z.

Theorem 1.5. If rot(h̃,∞) = p/q ((p, q) = 1), there is a periodic point x ∈ A of
period q such that rot(h̃, x) = p/q.

This is already known ([13]) except for the last statement about the rotation number.
Section 4 is devoted to the proof of Theorem 1.5.

Our last theorem is concerned about the case where −∞ is accessible from U∞.
Then the dynamics of h on Z is shown to be quite simple in the view point of rotation
numbers. This is a refinement of a result in [9] cited above. The proof is given in Section
5.

Theorem 1.6. Assume that −∞ is accessible from U∞ and let α = rot(h̃,∞).
Then

(1) rot(h̃, µ) = α for any h-invariant probability measure supported on Z.
(2) rot(h̃,−∞) = α.

Acknowledgements. Hearty thanks are due to the referee, for valuable com-
ments.

2. Prime end rotation numbers.

2.1. First of all, we recall fundamental facts about the prime end compactification
of W±∞. See [3], [11], [14], [12] for an detailed exposition.

A properly embedded copy of the real line c in W±∞ which does not pass through
±∞ is called a cross cut of W±∞. The word “proper” means that the inverse image of
any compact set is compact. The connected component of the complement of a cross cut
c which does not contain the point ±∞ is denoted by V (c). A sequence {ci}i∈N of cross
cuts is called a topological chain ([11]) if the following conditions are satisfied.

(1) ci+1 ⊂ V (ci), ∀i ∈ N.
(2) Cl(ci) ∩ Cl(cj) = ∅ if i 6= j, where Cl(·) denotes the closure in S2.
(3) diam(ci) → 0 as i → ∞, where the diameter is taken with respect to the spherical

metric of S2.

Two topological chains {ci} and {c′i} are said to be equivalent if for any i, there is j such
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that cj ⊂ V (c′i) and c′j ⊂ V (ci).
An equivalence class of topological chains is called a prime end of W±∞. The set of

prime ends is denoted by ∂W ∗
±∞. The set W ∗

±∞ = W±∞ ∪ ∂W ∗
±∞ is called the prime

end compactification of W±∞. It is topologized as follows. A neighbourhood system in
W ∗
±∞ of a point in W±∞ is the same as a given system for W±∞. Choose a point ξ in

∂W ∗
±∞ represented by a topological chain {ci}. The set of points in V (ci), together with

the prime ends represented by topological chains contained in V (ci), for each i, forms a
fundamental neighbourhood system of ξ. It is a classical fact due to Carathéodory that
W ∗
±∞ is homeomorphic to a closed disk.

It is clear by the topological nature of the definition that the homeomorphism h of
S2 induces a homeomorphism h∗±∞ of W ∗

±∞.

2.2. Now let us embark upon the costruction of the homeomorphism h ∈ H in
Theorem 1.2. We shall construct it as a homeomorphism of the annulus A. Roughly
speaking, on the subannulus S1 × [5,∞), h is of the form

h(θ, t) = (fα(θ), t− g(θ, t)),

where fα is a rigid rotation of S1 if α is rational, and a Denjoy homeomorphism if irra-
tional. By choosing the [0, 1]-valued function g appropriately, one can form the homeo-
morphism h which has a unique minimal set on the level t = 10. Also h satisfies

h(S1 × [5,∞)) = S1 × [4,∞).

Likewise we define h on (−∞,−5] using a homeomorphism fβ of S1 of rotation
number β. It has a unique minimal set on the level t = −10. Finally on S1 × [−5, 5], we
define h as

h(θ, t) = (ϕt(θ), t− 1),

by using an isotopy ϕt (t ∈ [−5, 5]) joining fβ and fα.
Let us start a concrete construction. Given α ∈ R, let us define a homeomorphism

fα of S1 and its lift f̃α : R → R with rotation number rot(f̃α) = α as follows. For
α rational, let f̃α be the translation by α. Thus fα is the rigid rotation of S1. For α

irrational, let fα be a Denjoy homeomorphism and f̃α the lift of fα such that rot(f̃) = α.
Let Cα ⊂ S1 be a minimal set of fα. Thus Cα is a single periodic orbit if α is rational,
and a Cantor set if α is irrational. For α irrational, we assume furthermore that the
complement of Cα consists of the orbit of a single wandering interval. That is, there is a
connected component Iα of S1 \ Cα such that

⋃
i∈Z f i

α(Iα) = S1 \ Cα.
Define a continuous function gα : S1 → [0, 1] such that

(a) g−1
α (0) = Cα, and

(b) for any θ ∈ S1 \ Cα,
∑

i≥0 gα(f i
α(θ)) = ∞ and

∑
i≤0 gα(f i

α(θ)) = ∞.

The existence of such gα is clear for α rational. For α irrational, first define gα on
the interval Cl(Iα) so that g−1

α (0) = ∂Iα. For any i ∈ Z \ {0}, define gα on f i
α(Iα) by

gα(f i
α(θ)) = |i|−1gα(θ). Finally set gα = 0 on Cα. Then gα is continuous and satisfies
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(a) and (b).
For β ∈ R, we define fβ , f̃β , Cβ and gβ likewise.
Define a continuous function g : S1×R→ [0, 1], differentiable along the R-direction,

such that

(c) g−1(0) = Cα × {10} ∪ Cβ × {−10},
(d) for t ∈ [9, 11], g(θ, t) ≥ gα(θ) and for t ∈ [−11,−9], g(θ, t) ≥ gβ(θ), with the equality

only for t = ±10,
(e) g = 1 on S1 × ((−∞, 15] ∪ [−5, 5] ∪ [15,∞)) and
(f) ∂g/∂t < 1.

Choose a continuous family ϕt (t ∈ R) of homeomorphisms of S1 and its continuous
lift ϕ̃t such that

(g) ϕ̃t = f̃α for t ∈ [5,∞) and ϕ̃t = f̃β for t ∈ (−∞,−5].

Finally define a homeomorphism h : S1 × R→ S1 × R by

h(θ, t) = (ϕt(θ), t− g(θ, t)).

2.3. We shall show that h satisfies the conditions of Theorem 1.2. First let us verify
that h is a homeomorphism of A. Clearly h is continuous and by (e) maps the circle
S1 × {15} (resp. S1 × {−15}) onto S1 × {14} (resp. S1 × {−16}). This shows that h is
surjective. To show that h is injective, assume h(θ1, t1) = h(θ2, t2). Then by (e) h maps
S1× [5,∞), S1× (−∞,−5] and S1× [−5, 5] respectively onto S1× [4,∞), S1× (−∞,−6]
and S1×[−6, 4]. Therefore the two points (θ1, t1) and (θ2, t2) must simultaneously belong
to either one of the subannuli S1 × [5,∞), S1 × (−∞,−5] and S1 × [−5, 5]. In the first
case we have

h(θi, ti) = (fα(θi), ti − g(θi, ti)),

and thus θ1 = θ2. On the other hand by (f), h|{θ}×R is injective, showing that t1 = t2.
The second case can be dealt with similarly.

In the last case, we have

h(θi, ti) = (ϕti
(θi), ti − 1).

Thus t1 = t2, which implies θ1 = θ2.
Next let us show that h ∈ H. Conditions (1) ∼ (3) of Definition 1.1 are clear. Let us

show (4). Consider the basin W∞ of the repellor ∞ (corresponding to the end S1×{∞}
of the cylinder A). Recall the notation U∞ = W∞ \ {∞} ⊂ A. We shall show

U∞ ∩ (S1 × [5,∞)) = (S1 × [5,∞)) \ (Cα × [5, 10]). (2.1)

To show this, first notice that the minimum value of g on S1× [10+ε,∞) is positive
for any ε > 0. This shows that S1 × (10,∞) ⊂ U∞. Next by (d) and (b), any point in
(S1 \ Cα)× (10, 11) can be moved below the level t = 10 by an iterate of h. Since
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U∞ =
⋃

i∈N
hi(S1 × (10,∞)),

we have

(S1 × [5,∞)) \ (Cα × [5, 10]) ⊂ U∞.

On the other hand, the opposite inclusion of (2.1) is easy to show.
The basin U∞ is obtained as the increasing union of the images of the set in (2.1)

by the positive iterates of h. Therefore it is clear that U∞ ∩ (S1 × (−5, 5)) is open and
dense in S1× (−5, 5). Likewise we can prove that U−∞∩ (S1× (−5, 5)) is open and dense
in S1 × (−5, 5). This shows that U∞ ∩ U−∞ 6= ∅, as is required.

What is left is to show that rot(h̃,∞) = α, the other assertion rot(h̃,−∞) = β being
proven similarly.

Now for any point θ ∈ S1, define the ray rθ : (0,∞) → U∞ by

rθ(t) = (θ, t−1 + 10).

For θ 6∈ Cα, the end point rθ(∞) = (θ, 10) is a point in U∞. For θ ∈ Cα, the end point
rθ(∞) is defined as a prime end, i.e. a point of ∂U∗

∞(= ∂W ∗
∞) as follows.

For any i ∈ N, let Si be the circle centered at (θ, 10) and of radius i−1, and ci the
cross cut of U∞ obtained as the connected component of Si ∩U∞ that intersects the ray
rθ. Clearly {ci} is a topological chain. Denote the prime end it determines by rθ(∞).

Define a map γ : S1 → U∗
∞ by γ(θ) = rθ(∞). The map γ is clearly injective. It

is also continuous according to the definition of the topology of U∗
∞. The intersection

C∗ of the curve γ with the set of prime ends ∂U∗
∞ is either a finite set or a Cantor set,

and γ maps Cα homeomorphically onto C∗ in a way to preserve the cyclic order and
conjugates fα|Cα

to h∗∞|C∗ . Moreover there is a lift of γ defined on R taking values on
Ũ∗
∞ which maps π−1(Cα) homeomorphically onto π−1(C∗) in an order preserving way

and conjugates f̃α|π−1(Cα) to h̃∗∞|π−1(C∗). Since the lift h̃ of h is determined by (g),
we have rot(h̃,∞) = α, completing the proof of Theorem 1.2.

3. The rotation set of a chain transitive class.

3.1. Fix h ∈ H. For ε > 0 and x, y ∈ S2, a sequence {x = x0, x2, . . . , xr = y} of
points of S2 is called an ε-chain of h of length r from x to y if for any 0 ≤ i ≤ n − 1,
d(h(xi), xi+1) < ε, and an ε-cycle at x if furthermore x = y. A point x ∈ S2 is called
chain recurrent if for any ε > 0, there is an ε-cycle at x. The set C of the chain recurrent
points is called the chain recurrent set. It is a closed set invariant by h.

Two points x and y of C are said to be chain transitive, denoted x ∼ y, if for any
ε > 0, there are an ε-chain from x to y and another from y to x. An equivalence class of
∼ is called a chain transitive class. Again it is closed and invariant by h.

Definition 3.1. A continuous function H : S2 → R is called a complete Lyapunov
function of h if it satisfies the following conditions.
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(1) If x 6∈ C, then H(h(x)) < H(x).
(2) If x, y ∈ C, H(x) = H(y) if and only if x ∼ y.
(3) The set of values H(C) is closed and Lebesgue null in R.

A value in R \ H(C) is called a dynamically regular value of H. If a is dynamically
regular, then H−1(a) is mapped by h into H−1((−∞, a))

The existence of a complete Lyapunov function for any homeomorphism of a com-
pact metric space is shown in [4]. For our purpose, the following proposition is more
convenient. The proof can be found in Appendix.

Proposition 3.2. For any h ∈ H, there is a C∞ complete Lyapunov function H

of h.

Condition (3) above and the Sard theorem say that dynamically regular and regular
(in the usual sense) values are Lebesgue full. For such a value a, H−1(a) is a 1 dimensional
C∞ submanifold and h maps H−1(a) into H−1((−∞, a)).

3.2. Let us construct an example of C∞ diffeomorphism h ∈ H which admits a
chain transitive class C0 such that the rotation set rot(h̃, C0) is a nontrivial interval. We
construct h as an area preserving diffeomorphism of the annulus A, which is so to call a
“winding horseshoe map”. See Figure 1. Let us denote by m the (infinite) measure on
A given by the area form dθ ∧ dt.

Figure 1.

Choose a rectangle R = [0, 4−1]× [−4−1, 0] in A = (R/Z)×R. Stretch R horizontally
by 5 and contract vertically by 5−1, and embed the resultant long and thin rectangle
into A in a way to wind the annulus A. The precise conditions for a map h : R → A is
the following.

(1) h is an m-preserving C∞ embedding.
(2) Restricted to the subrectangle R0 = [0, 20−1]× [−4−1, 0],

h(θ, t) = (5θ, 5−1t).
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(3) Restricted to the subrectangle R1 = [5−1, 4−1]× [−4−1, 0],

h(θ, t) = (5θ − 1, 5−1t− 5−1).

(4) h−1(R) = R0 ∪R1.
(5) R ∪ h(R) separates both ends of A.

Notice that the points a = (0, 0) and b = (4−1,−4−1) are the (only) fixed points of
h. Extend h to a C∞ diffeomorphism h0 of A so as to satisfy the following conditions.

(6) On S1 × ((−∞,−10] ∪ [10,∞)), h0(θ, t) = (θ, t− 1).

The measure (h0)∗m coincides with m on h0(R), since h0 is m-preserving on R, and
likewise on h0(S1 × ((−∞,−10] ∪ [10,∞))). Now by Moser’s lemma ([10, p. 16]), there
is a C∞ diffeomorphsim h1 on A such that (h1)∗((h0)∗(m)) = m which is the identity on
h0(R ∪ (S1 × (−∞,−10] ∪ [10,∞))).

Now the composite h = h1 ◦ h0 is m-preserving. Let us show that h satisfies the
condition raised in the beginning of 3.2. First of all clearly h satisfies condition (1)
∼ (3) of Definition 1.1. Moreover since h is m-preserving, it cannot admit a invariant
continuum separating both ends of A. Therefore it satisfies (4) also.

Choose a lift h̃ of h so that each point of π−1(a) is fixed by h̃. Then we have
rot(h̃, a) = 0 and rot(h̃, b) = 1.

Finally we have a ∼ b, since the stable manifold of a intersects the unstable manifold
of b, and the unstable manifold of a intersects the stable manifold of b. Therefore the
chain transitive class C0 of a and b satisfies [0, 1] ⊂ rot(h̃, C0).

3.3. Here we shall show Theorem 1.3 by a rather lengthy argument. We consider
h ∈ H to be a homeomorphism of the annulus A. Denote the generator of the covering
transformations by T : Ã → Ã: T (θ, t) = (θ + 1, t). First of all we have the following
fundamental lemma.

Lemma 3.3. Suppose hq(z) = z (q ∈ N, z ∈ A) and let p ∈ Z. (We do not assume
(p, q) = 1.) Then the following conditions are equivalent.

(1) rot(h̃, z) = p/q.
(2) h̃q(z̃) = T p(z̃) for a lift z̃ of z.

Notice that condition (2) is independent of the choice of the lift z̃. This is because
h̃ commutes with T .

Proof. Recall that π : Ã → A is the universal covering map and Π1 : Ã → R is
the canonical projection onto the first factor. Define a function ϕ : A→ R by

π ◦ ϕ = Π1 ◦ h̃−Π1.

Denote the average of the Dirac masses along the orbit of z by µ, that is,

µ = q−1(δz + δh(z) + · · ·+ δhq−1(z)).
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Notice that for any i ∈ N,

〈δhi(z), ϕ〉 = 〈π∗δh̃i(z̃), ϕ〉 = 〈δh̃i(z̃), ϕ ◦ π〉

= 〈δh̃i(z̃),Π1 ◦ h̃−Π1〉 = Π1(h̃i+1(z̃))−Π1(h̃i(z̃)). (3.1)

Now assume (1): rot(h̃, z) = 〈µ, ϕ〉 = p/q. Then we have by (3.1)

Π1(hq(z̃))−Π1(z̃) = p.

That is,

Π1(hq(z̃)) = Π1(T p(z̃)). (3.2)

On the other hand, since hq(z) = z, we have

h̃q(z̃) = T j(z̃) (3.3)

for some j ∈ Z. Now (3.2) and (3.3) imply that j = p. We obtain condition (2). The
converse can be shown by a reversed argument. ¤

Let us begin the proof of Theorem 1.3. Let h ∈ H and C0 a chain transitive class
of h. Assume xν ∈ C0 are periodic points such that rot(h̃, xν) = αν (ν = 1, 2) and let
α be a rational number in [α1, α2]. If α1 = α2, there is nothing to prove. So assume
α1 < α < α2. Then it is possible to choose a number q ∈ N such that

(a) the rational numbers αν and α are written as

αν = pν/q (ν = 1, 2), α = p/q, p1 < p < p2, and

(b) the periodic points xν satisfies hq(xν) = xν .

By Lemma 3.3, lifts x̃ν of xν satisfy h̃q(x̃ν) = T pν (x̃ν). Our purpose is to show the
existence of a periodic point x ∈ C0 of period q such that rot(h̃, x) = p/q, that is, whose
lifts x̃ satisfy h̃q(x̃) = T p(x̃).

However a simultaneous proof for all p ∈ (p1, p2) has an elementary number theoretic
difficulty. We shall avoid it by employing an induction on p− p1. Namely we first show
only for p = p1 +1. Then the newly obtained periodic points can serve as an assumption
for the next step p = p1 + 2. This way, Theorem 1.3 reduces to the following.

Proposition 3.4. Let q > 0 and p1 +1 < p2 and let C0 be a chain transitive class
of h ∈ H. Assume there are points xν ∈ C0 with a lift x̃ν such that h̃q(x̃ν) = T pν (x̃ν)
(ν = 1, 2). Then there is a point x ∈ C0 with a lift x̃ such that h̃q(x̃) = T p1+1(x̃).

Now Proposition 3.4 itself reduces to the following.

Proposition 3.5. Let q > 0 and p1 +1 < p2 and let C0 be a chain transitive class
of h ∈ H. Assume there are points xν ∈ C0 with a lift x̃ν such that h̃q(x̃ν) = T pν (x̃ν)
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(ν = 1, 2). Let H be a C∞ complete Lyapunov function such that H(C0) = 0, and let
−a′ < 0 and a > 0 be dynamically regular and regular values of H. Then there is a point
x in the subsurface H−1([−a′, a]) with a lift x̃ such that h̃q(x̃) = T p1+1(x̃).

Postponing the proof, we shall show the reduction. Thanks to the Sard theorem
and condition (3) of Definition 3.1, one can find dynamically regular and regular values
−a′ < 0 < a of H as close to 0 as we want. Let

F0 = π(Fix(h̃q ◦ T−p1−1)).

Then Proposition 3.5 says that F0 ∩ H−1([−a′, a]) 6= ∅ for any such values. By the
compactness of F0, this implis that F0 ∩H−1(0) 6= ∅. On the other hand, since H is a
complete Lyapunov function, C ∩H−1(0) = C0, showing F0 ∩ C0 6= ∅, as is required in
Proposition 3.4.

The rest of this paragraph is devoted to the proof of Proposition 3.5. The subsurface
H−1([−a′, a]) admits a single distinguished connected component X which is homotopi-
cally nontrivial in A. In fact, if there were more than one such components, then in
the complement, one could find a forward invariant compact subannulus. The intersec-
tion of its forward images would be a h-invariant continuum separating U∞ and U−∞,
contradicting condition (4) of Definition 1.1.

Let us consider the upper boundary H−1(a) ∩X of X. It has a unique homotopi-
cally nontrivial component ∂A+. The curve ∂A+ bounds an infinite annulus A+ on the
opposite side of X. The intersection of Int(A+) with the level H−1(a) consists of finitely
many circles ∂D+

i . They bound discs D+
i in A+. See Figure 2.

The components of H−1(a) ∩ X other than ∂A+ are denoted by ∂E+
k . They are

finite in number and bound discs E+
k in A.

Figure 2.
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Likewise we define an annulus A−, discs D−
j and E−

l by considering the lower bound-
ary H−1(−a′) ∩X of X. Then we have

A = X ∪A− ∪A+ ∪
⋃

k

E+
k ∪

⋃

l

E−
l .

Let us study how family of the discs D+ = {D+
i } are mapped by h, and show the

following. Denote |D+| = ⋃
i D+

i .

Proposition 3.6. The chain transitive class C0 is disjoint from A+ ∪A−.

This is not obvious since discs D+
i ⊂ A+ may intersect H−1(0). Our overall strategy

after having shown Proposition 3.6 is to replace h by a homeomorphism which has no
periodic points in A+ ∪A−, and seek for periodic points in the rest of A. The argument
will be divided into two cases. In the first case we employ a topological method, while
in the second a dynamical.

To establish Proposition 3.6, we must prepare some lemmas.

Lemma 3.7. For any small ε > 0, an ε-chain joining two points in C0 is contained
in H−1((−a′, a)).

Proof. Notice that −a′ is a dynamically regular value (Definiton 3.1) and there-
fore h maps the level H−1(−a′) below itself. Therefore there is ε0 > 0 such that the
ε0-neighbourhood of any point in H−1((−∞,−a′]) is mapped by h into H−1((−∞,−a′)).
If we choose ε < ε0 and if the ε-chain joining two points of C0 falls into H−1((−∞,−a′]),
then the rest of the chain cannot escape H−1((−∞,−a′)) forever. A contradiction. The
opposite case of falling into H−1([a,∞)) can be dealt with similarly by considering h−1

and the reversed chain. ¤

Let B+ = A+ \ |D+|. Then we have h−1(B+) ⊂ B+. In fact, a point z ∈ B+ is
characterized by the existence of a path in H−1([a,∞)) starting at z and ending at a
point in ∂A+ without passing H−1(a) in the middle. This property is inherited to h−1(z)
since there is a path from h−1(∂A+) to ∂A+ which does not pass H−1(a) in the middle.

The above inclusion implies that any disc D+
i ∈ D+ is mapped by h to the comple-

ment of B+, either into Int(D+
i′ ) for some D+

i′ ∈ D+ or into A \A+. Notice that A \A+

is forward invariant by h.
Let us call a sequence in D+

P = {D+
i0

, D+
i1

, . . . , D+
in
}

a cycle of discs, if h(D+
ij−1

) ⊂ Int(D+
ij

) (0 < j ≤ n) and D+
in

= D+
i0

. Denote |P| =⋃n−1
j=0 D+

ij
.

Lemma 3.8. If C0 ∩ A+ 6= ∅, then there is a cycle of discs P in D+ such that
C0 ∩ |P| 6= ∅.

Proof. One can show as in the proof of Lemma 3.7 that for any small ε > 0, there
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is no ε-chain from a point in A \A+ to a point in A+, since h(Cl(A \A+)) ⊂ A \A+.
Notice that C0 is h-invariant. Now if D+

i ∩ C0 6= ∅ for some D+
i ∈ D+, D+

i cannot
be mapped into A \ A+ by a positive iterate of h. Then the iterated images of D+

i

are eventually periodic. That is, there are m > 0 and a cycle of discs P such that
hm(D+

i ) ⊂ |P|. Since C0 is h-invariant, this shows the lemma. ¤

Lemma 3.9. If C0 ∩ |P| 6= ∅ for some cycle of discs P of D+, then C0 ⊂ |P|.

Proof. The set H−1([−a′, a])\|P| is compact, as well as |P|. Thus there is ε0 > 0
such that any z ∈ H−1([−a′, a]) \ |P| and w ∈ |P| satisfy d(z, w) > ε0.

Let x ∈ C0 ∩ |P| and let y be an arbitrary point in C0. Choose ε small enough so
that ε < ε0 and that any ε-chain x0, x1, . . . , xr from x to y is contained in H−1((−a′, a))
(Lemma 3.7). We shall show inductively that xi ∈ |P|. This is true for i = 0. Assume
xi−1 ∈ |P|. Then h(xi−1) ∈ |P| since |P| is forward invariant. On the other hand,
d(xi, h(xi−1)) < ε0 and xi ∈ H−1([−a′, a]). By the definition of ε0, this implies xi ∈ |P|.
Inductively we have y ∈ |P|, as is required. ¤

Lemma 3.10. If two periodic points zν (ν = 1, 2) are contained in |P|, where P is
a cycle of discs in D+, then we have rot(h̃, z1) = rot(h̃, z2).

Proof. By replacing zν by their iterate, one may assume both zν belong to the
disc D+

i0
. Choose the lift z̃ν of zν from the same lift of D+

i0
. Then for any j ∈ N, their

images h̃j(z̃ν) must belong to the same lift of the same disc D+
ij

, showing the lemma. ¤

Proof of Proposition 3.6. Assume on the contrary that C0 ∩ A+ 6= ∅. Then
by Lemmas 3.8 and 3.9, C0 ⊂ |P| for a cycle of discs P in D+. But then Lemma 3.10
contradicts the assumption of C0 (the existence of two periodic points of different rotation
number). The case C0 ∩A− 6= ∅ can be dealt with similarly. ¤

Now let us deform the homeomorphism h in A− ∪ A+ so that it has no periodic
points in A− ∪A+. Namely we replace h with a map in H with very simple dynamics in
A− ∪A+. Notice that for any small ε, any ε-chain starting and ending at C0 never falls
into A+ ∪ A−. Proposition 3.6, together with this fact, shows that the chain transitive
class C0 of the old h is unchanged for the new h. Especially the points xν ∈ C0 in the
assumption of Proposition 3.5 are still the periodic points of the new h. Moreover if
we find a periodic point of the new h in C0, it is a periodic point of the old h in C0

of the same rotation number. Therefore in the proof of Proposition 3.5, it is no loss of
generality to assume the following.

Assumption 3.11. There is β > 0 such that for any z ∈ A− ∪ A+, we have
d(z, hq(z)) > β.

The rest of the proof is divided into two cases according to whether F0 ∩ (
⋃

k E+
k ∪⋃

l E
−
l ) = ∅ or not, where F0 = π(Fix(h̃q ◦ T−p1−1)).

Case 1. F0 ∩ (
⋃

k E+
k ∪⋃

l E
−
l ) 6= ∅.

The argument in this case is based upon the Nielsen fixed point theory ([8]), which
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is a refinement of the Lefschetz index theorem. Let us give a brief summary of the theory
for the special case of a continuous map f of the closed annulus B. Let us denote by
π : B̃ → B the universal covering map. Let {f̃i}i∈I be the family of the lifts of f to B̃.
Then Fi = π(Fix(f̃i)) is a closed subset of Fix(f), called a Nielsen class of Fix(f). It is
empty but for finitely many lifts f̃i, and Fix(f) is partitioned into a finite disjoint union
of nonempty Nielsen classes. To each Nielsen class Fi, an integer Index(f, Fi), called the
index of Fi, is assigned so that the sum of indices is equal to the Lefschetz number of f .

The most important feature of the index is the following. Suppose that two maps
f and f ′ are homotopic, and a lift f̃i of f is joined with a lift f̃ ′i of f ′ by a lift of the
homotopy. Then the corresponding Nielsen classes Fi = π(Fix(f̃i)) and F ′i = π(Fix(f̃ ′i))
have the same index: Index(f, Fi) = Index(f ′, F ′i ).

In particular if f : B → B is homotopic to the identity, then for any Nielsen class
Fi, we have Index(f, Fi) = 0, since f is homotopic to a fixed point free homeomorphism.

The index Index(f, Fi) is computed as follows. If a Nielsen class Fi is partitioned
into a finite disjoint union of closed subsets: Fi =

⋃
j Gj , then

Index(f, Fi) =
∑

j

Index(f,Gj).

Assume there is a closed disc D such that

Gj = Fix(f) ∩D ⊂ Int(D). (3.4)

Let f̃i be the lift correspoinding to the Nielsen class Fi that contains Gj and D̃ any lift
of D. Consider an inclusion B̃ ⊂ R2. Then Index(f,Gj) is the mapping degree of the
map

Id− f̃i : ∂D̃ → R2 \ {0}.

This is independent of the choice of the disc D satisfying (3.4). In particular if Gj is
nonempty and if f−1(D) ⊂ Int(D), then Index(f,Gj) = 1.

Now let us start the proof of Proposition 3.5 in Case 1. We apply the Nielsen fixed
point theory to the map hq. For this purpose, the homeomophism hq : A → A must be
deformed in the exterior of a compact subannulus and extended to a homeomorphism of
B in such a way that the fixed point of the new extended hq is the same as the original
hq. But this can easily be done. In the sequal, we forget about this change, and just
consider the original hq.

We are interested in the particular lift h̃q ◦ T−p1−1 and the corresponding Nielsen
class F0 = π(Fix(h̃q ◦T−p1−1)). Our purpose is to show that F0∩H−1([−a′, a]) 6= ∅. We
have

Index(hq, F0) = 0. (3.5)

Assume F0∩E+
k 6= ∅ for some k. Then we have h−q(E+

k ) ⊂ Int(E+
k ). Condition (3.4)

above is satisfied for f = hq, D = E+
k and Gj = F0 ∩ E+

k . Thus we have Index(hq, F0 ∩



490 S. Matsumoto

E+
k ) = 1. Likewise if F0 ∩ E−

l 6= ∅, then Index(hq, F0 ∩ E−
l ) = 1.

On the other hand by Assumption 3.11, F0 ∩ (A− ∪A+) = ∅. By (3.5), this implies
that Index(hq, F0 ∩X) < 0, showing that F0 ∩X 6= ∅, and hence F0 ∩H−1([−a′, a]) 6= ∅,
as is required.

Case 2. F0 ∩ (
⋃

k E+
k ∪⋃

l E
−
l ) = ∅.

In this case, F0, if nonempty, must be contained in X ⊂ H−1([−a′, a]). Therefore
we only need to show that F0 is nonempty in A. The proof is by absurdity. Assume
throughout Case 2 that the map h̃q ◦ T−p1−1 is fixed point free. This, together with
Assumption 3.11, implies that there is α > 0 with the following property.

(1) For any z̃ ∈ Ã, d(h̃q(z̃), T p1+1(z̃)) > 2α.

Here d denotes the distance function given by the lift of the standard Riemannian metric
dθ2 + dt2 of A. Thus the covering transformation T is an isometry for d.

There is δ > 0 such that for a lift ϕ̃ of a homeomorphism ϕ of A, the following holds.
We denote by ‖ · ‖0 the supremum norm.

(2) If ‖ϕ̃− Id‖0 < 2δ, then ‖(ϕ̃ ◦ h̃)q − h̃q‖0 < α.

Conditions (1) and (2) implies in particular that for any z̃ ∈ Ã, we have

d((ϕ̃ ◦ h̃)q(z̃), T p1+1(z̃)) > α,

and therefore we have the following.

(3) There is no fixed point of (ϕ̃ ◦ h̃)q ◦ T−p1−1.

Fix once and for all the number δ > 0 that satisfies (2).
Recall the periodic points xν and their lift x̃ν in the assumption of Proposition 3.5.

Consider a δ-chain γ = (z0, z1, . . . , zi) of length i from xν to xν′ (ν, ν′ = 1, 2). Let
γ̃ = (z̃0, z̃1, . . . , z̃i) be a lift of γ starting at x̃ν which is a δ-chain for h̃. Assume that
γ̃ ends at T j(x̃ν′) for some j ∈ Z. Then the pair (i, j) is called the dynamical index of
γ. We have the following lemma, which is a variant of the method for finding periodic
points invented in [5].

Lemma 3.12. There is no δ-cycle at x1 of dynamical index (ξq, ξ(p1 + 1)) for any
ξ ∈ N.

Proof. Assume for contradiction that there is a δ-cycle γ = (z0, z1 . . . , zr) at x1

of dynamical index ξ(q, p1 + 1) for some ξ > 0, Thus r = ξq and z0 = zr = x1. Then
there is a homeomorphism ϕ of A such that ϕ(h(zi)) = zi+1 (0 ≤ i < ξq) and that
‖ϕ− Id‖0 < 2δ.

To show this, consider the product A× [0, 1] and the line segments joining (h(zi), 0)
to (zi+1, 1). A general position argument shows that the line segments can be moved
slightly so that they are mutually disjoint. Define a vector field X pointing upwards,
tangent to the segments. With an appropriate choice of X, the holonomy map of X from
A× {0} to A× {1} yields a desired homeomorphism ϕ. See Figure 3.
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Figure 3.

Let ϕ̃ be the lift of ϕ such that ‖ϕ̃−Id‖0 < 2δ. Now the sequence (z0, zq, z2q, . . . , zξq)
is a periodic orbit of (ϕ ◦ h)q. It has a lift z̃0, z̃q, . . . , z̃ξq that is a periodic orbit of
(ϕ̃ ◦ h̃)q ◦ T−p1−1, since the dynamical index of γ is ξ(q, p1 + 1). Hence by the Brouwer
plane fixed point theorem, there is a fixed point of (ϕ̃ ◦ h̃)q ◦ T−p1−1. This is contrary to
condition (3). The proof is complete now. ¤

In the rest we shall construct a δ-chain prohibited in Lemma 3.12, by using the
condition x1 ∼ x2. The absurdity will show that F0 6= ∅, as is required.

Let γ1 be a δ-chain from x1 to x2 of dynamical index (i1, j1), and γ3 another from
x2 to x1 of dynamical index (i2, j2). One can assume that i1 + i2 is a multiple of q. In
fact, if it is not the case, consider the concatenation (γ1 ·γ3)q−1 ·γ1 instead of γ1, leaving
γ3 unchanged. Thus we can set

(4) i1 + i2 = aq for some a ∈ N and j1 + j2 = b (b ∈ Z).

Let

γ2 = (x2, h(x2), . . . , hq−1(x2), x2), and

γ4 = (x1, h(x1), . . . , hq−1(x1), x1).

They are periodic orbits, and hence δ-cycles, of dynamical indices (q, p2) and (q, p1)
respectively. Consider the concatenation γ1 · γη

2 · γ3 · γζ
4 for some η, ζ ∈ N. It is a δ-cycle

at x1 of dynamical index (qa + qζ + qη, b + ζp1 + ηp2).
We shall show there are ξ, ζ and η such that the above concatenation becomes a

δ-cycle of dynamical index ξ(q, p1 + 1) forbidden in Lemma 3.12. The equation for it is
the following.

(5) a + ζ + η = ξ.
(6) b + ζp1 + ηp2 = ξ(p1 + 1).

Now for any large η > 0, define ξ and ζ by

ξ = η(p2 − p1) + (b− p1a) and ζ = η(p2 − p1 − 1) + (b− p1a− a).
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Then η, ξ and ζ are positive integeres satisfying (5) and (6). A contradiction shows
Proposition 3.5. We are done with the proof of Theorem 1.3.

3.4. Finally let us show Corollary 1.4. In view of Theorem 1.3, we only need to
show the existence of a periodic point xν ∈ C0 such that rot(h̃, xν) = αν . For this
we proceed just as in 3.3. The assumption that [α1, α2] is a nondegenerate interval is
necessary for Proposition 3.6, which uses Lemma 3.10. The proof in the present case is
exactly the same except at the last step, Case 2. At that point, we need the following
proposition.

Proposition 3.13. Suppose C0 is a chain transitive class with rot(h̃, C0) = [α1, α2]
with α1 = p/q, (p, q) = 1. Then the homeomorphism h̃q ◦ T−p admits a fixed point in Ã.

We emphasize that we have only to show the existence of the fixed point in the
whole Ã, since we have followed the argument in 3.3. The rest of this paragraph is
devoted to the proof of Proposition 3.13. The assumption rot(h̃, C0) = [p/q, α2] implies
the following.

Lemma 3.14. We have rot(h̃q, C0) = [p, qα2].

Here C0 may not be a single chain transitive class for hq. But the rotation set
rot(h̃q, C0) is defined, in the same way, as the set of the values rot(h̃, µ), where µ runs
over the space of the hq-invariant probability measures supported on C0.

Proof. Clearly a h-invariant probability measure µ is hq-invariant and
rot(h̃q, µ) = q · rot(h̃, µ). To show this, notice that

rot(h̃q, µ) = 〈µ,Π1 ◦ h̃q −Π1〉 =
q∑

i=0

〈µ, Π1 ◦ h̃i+1 −Π1 ◦ h̃i〉,

where 〈µ, Π1 ◦ h̃i+1 −Π1 ◦ h̃i〉 = 〈µ, (Π1 ◦ h̃−Π1) ◦ hi〉
= 〈hi

∗µ, Π1 ◦ h̃−Π1〉 = 〈µ, Π1 ◦ h̃−Π1〉 = rot(h̃, µ).

Thus we get

q · rot(h̃, C0) ⊂ rot(h̃q, C0).

On the other hand, given a hq-invariant probability measure ν, the average ν̂ =
q−1

∑q−1
i=0 hi

∗ν is h-invariant, and we have

〈ν̂, Π1 ◦ h̃−Π1〉 = q−1

q−1∑

i=0

〈h̃i
∗ν, Π1 ◦ h̃−Π1〉 = q−1〈ν, Π1 ◦ h̃q −Π〉,

showing rot(h̃, ν̂) = q−1 · rot(h̃q, ν). This implies the converse inclusion

q · rot(h̃, C0) ⊃ rot(h̃q, C0). ¤
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Since p is an extremal point of the rotation set [p, qα2], there is an ergodic hq-
invariant probability measure µ supported on C0 such that rot(h̃q, µ) = p. To see this,
any hq-invariant measure is a convex integral of the ergodic components, and since p is
extremal, almost any ergodic component has rotation number p.

We use the following version of the Atkinson theorem ([1]), whose proof is found at
Proposition 12.1 of [7].

Proposition 3.15. Suppose T : X → X is an ergodic automorphism of a prob-
ability space (X, µ) and let ϕ : X → R be an integrable function with 〈µ, ϕ〉 = 0. Let
S(n, x) =

∑n−1
i=0 ϕ(T i(x)). Then for any ε > 0 the set of x such that |S(n, x)| < ε for

infinitely many n is a full measure subset of X.

Notice that Proposition 3.15 holds only for R-valued functions, and fails e.g. for
C-valued functions. We apply Proposition 3.15 for the transformation hq : C0 → C0, an
ergodic measure µ with rot(h̃q, µ) = p, the function ϕ : C0 → R defined by

ϕ ◦ π = Π1 ◦ h̃q ◦ T−p −Π1 = Π1 ◦ h̃q −Π1 − p,

and ε = 1. Notice that the condition rot(h̃q, µ) = p is equivalent to 〈µ, ϕ〉 = 0.
Since for any i ∈ N,

ϕ ◦ hqi ◦ π = ϕ ◦ π ◦ (h̃q ◦ T−p)i = Π1 ◦ (h̃q ◦ T−p)i+1 −Π1 ◦ (h̃q ◦ T−p)i,

we have

S(n, ·) ◦ π = Π1 ◦ (h̃q ◦ T−p)n −Π1.

By Proposition 3.15, there is a point x ∈ C0 such that |S(n, x)| < 1 for infinitely many
n ∈ N.

Then a lift x̃ of x satisfies

|Π1((h̃q ◦ T−p)n(x̃))−Π1(x̃)| < 1 (3.6)

for infinitely many n ∈ N. Since the orbit of x̃ is contained in π−1(C0), a subset in Ã
bounded from above and below, (3.6) implies that the ω-limit set of x̃ for the homeomor-
phism h̃q ◦ T−p is nonempty. Especially the nonwandering set of h̃q ◦ T−p is nonempty.
This implies the existence of a fixed poit of h̃q ◦ T−p by virtue of (a variant of) the
Brouwer plane fixed point theorem ([6]). This completes the proof of Proposition 3.13.

4. Realization of a rational prime end rotation number.

The purpose of this section is to give a proof of Theorem 1.5. We assume throughout
that rot(h̃,∞) = p/q for h ∈ H, and that H is a C∞ complete Lyapunov function defined
on A. Let F1 = π(Fix(h̃q ◦ T−p)), the Nielsen class associated to the lift h̃q ◦ T−q of hq.
Our purpose is to show that F1 is nonvoid.

Let a be a regular and dynamically regular value of H which satisfies the following
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Figure 4.

condition:

A+ ∩ Fr(U∞) 6= ∅, (4.1)

where A+ is the upper subannulus bounded by the unique homotopically nontrivial simple
closed curve in H−1(a). The lower subannulus is denoted by A−.

Let V be the unique unbounded component of U∞ ∩A+. See Figure 4. Let

ClU∞(V ) ∩ ∂A− =
∐

ν∈I

cν ,

where cν are cross cuts of U∞. The cross cuts cν are at most countable and oriented
according to the orientation of V . Let Eν be the connected component of U∞\cν disjoint
from V . Since A− is forward invariant, Cl(Eν) is mapped by hq into some Eν′ .

Let pν (resp. qν) be the innitial point (resp. terminal point) of cν . As in 2.3, the
cross cut cν with endpoint pν (resp. qν) defines a prime end denoted by p̂ν (resp. q̂ν).
Denote by ĉν the closed interval in the set of prime ends ∂U∗

∞ bounded by p̂ν and q̂ν . In
other words,

ĉν = ClU∗∞(Eν) ∩ ∂U∗
∞.

Of course they are mutually disjoint, and ĉν is mapped by (h∗∞)q into the interior of
some ĉν′ . If ν 6= ν′, then there is no fixed point of (h∗∞)q in ĉν . If ν = ν′, ĉν is mapped
into the interior of itself by ĉν . On the other hand, there is a fixed point of (h∗∞)q, since
rot(h̃,∞) = p/q. Therefore there must be a fixed point ξ of (h∗∞)q in the set

Ξ = ∂U∗
∞ \

( ⋃
ν

ĉν

)
.

More precisely, any lift ξ̃ of ξ to ∂Ũ∗
∞, the universal cover of ∂U∗

∞, is fixed by (h̃∗∞)q◦T−p.
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The principal point set Π(ξ) of the prime end ξ is defined to be the set of all the
limit points of topological chains which represent the prime end ξ. As is well known
([14]), the principal point set Π(ξ) is closed, connected and invariant by hq. Clearly it is
contained in Fr(U∞). Also since ξ is contained in Ξ, any cross cut ci of any topological
chain {ci} representing ξ must intersect Cl(V ). The set Π(ξ) is contained in Cl(V ), since
diam(ci) → 0. This implies that Π(ξ) is compact. Let Π̂(ξ) be the union of Π(ξ) with
all the bounded connected components of the complement. The set Π̂(ξ) is also a hq-
invariant continuum, and therefore it does not separate two ends of A by the assumption
on h. It is also nonseparating, in the sense that its complement is connected.

The Cartwright-Littlewood theorem ([2]) asserts that any planar homeomorphism
leaving a nonseparating continuum invariant has a fixed point in it. Thus there is a fixed
point y of hq in Π̂(ξ). In the rest of this section, we shall show y ∈ F1, i.e. a lift ỹ of y

is a fixed point of h̃q ◦ T−p. But in fact, we shall find such a point ỹ at the very end of
the proof.

Recall that for a bounded cross cut c of U∞, V (c) denotes the component of U∞ \ c

which is homeomorphic to an open disc. Likewise we define the component V (c̃) for a
lift c̃ of c to be the lift of V (c) bounded by c̃.

Given a topological chain {ci} of U∞, a lift {c̃i} of {ci} is defined as follows. For
i = 1, let c̃1 be an arbitrary lift of c1. For i > 1, let c̃i be the unique lift of ci contained
in V (c̃i−1). Then we have V (c̃i) ⊂ V (c̃i−1) (∀i > 1), and the lift {c̃i} is determined
uniquely by the choice of c̃1.

Let x ∈ Π(ξ) be an arbitrary point, and let {ci} be a topological chain representing
ξ such that ci → x. Let {c̃i} be a lift of {ci} and x̃ a lift of x. Then since ci → x, there
is a sequence of integers ni such that Tni(c̃i) → x̃. Let us show that ni is identical for
any large i.

Since Π(ξ) is compact and does not separate the two ends of A, there is a simple
closed curve Γ such that Π(ξ) is contained in the open disc E bounded by Γ. Assume
that there are infinitely many i such that ni+1 6= ni. For any large i, the cross cuts ci and
ci+1 are contained in E. Consider a simple path γ joining ci to ci+1 in V (ci) \ V (ci+1).
Then γ, starting and ending in E, must wind the annulus A since ni+1 6= ni. Thus
there is a cross cut c′i contained in Γ which separates ci+1 and ci. Passing to a further
subsequence, we may assume Cl(c′i) are disjoint, since c′i are disjoint open intervals of a
single curve Γ. We also have diam(c′i) → 0. Thus {c′i} is a topological chain contained
in Γ, which is clearly equivalent to {ci}. Thus any accumulation point of {c′i} must be
contained in the principal point set Π(ξ). This contradicts the choice of Γ: Γ∩Π(ξ) = ∅.

Now one can assume, changing the lift x̃ of x if necessary, that c̃i → x̃ for the lift
{c̃i}. By the definition of the topology of the prime end compactification (Section 2), the
family {V (ci)} forms a fundamental neighbourhood system of the prime end ξ ∈ U∗

∞.
Then it follows immediately that {V (c̃i)} forms a fundamental neighbourhood system of
a lift ξ̃ of ξ. On the other hand, we have (h̃∗∞)q ◦ T−p(ξ̃) = ξ̃. Thus {h̃q ◦ T−p(V (c̃i))}
is also a fundamental neighbourhood system of ξ̃. That is, {h̃q ◦ T−p(c̃i)} and {c̃i} are
equivalent in the sense that for any i, there is j such that c̃j ⊂ V (h̃q ◦ T−p(c̃i)) and
h̃q ◦ T−p(c̃j) ⊂ V (c̃i).

Let Π̃(ξ) be the lift of Π(ξ) which contains the point x̃. The set Π̃(ξ) is characterized
as the set of the limit points of lifts of topological chains which are equivalent to {c̃i}.
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Since {h̃q ◦ T−p(c̃i)} is equivalent to {c̃i}, and h̃q ◦ T−p(c̃i) → h̃q ◦ T−p(x̃), we have
h̃q ◦ T−p(x̃) ∈ Π̃(ξ). But then since hq(Π(ξ)) = Π(ξ), we have h̃q ◦ T−p(Π̃(ξ)) = Π̃(ξ).

Finally by the Cartwright-Littlewood theorem, there is a fixed point ỹ of h̃q ◦ T−p

in the corresponding lift of Π̂(ξ), completing the proof of Theorem 1.5.

5. Accessible case.

This section is devoted to the proof of Theorem 1.6. Let h ∈ H be a homeomorphism
satisfying rot(h̃,∞) = α for some lift h̃ and α ∈ R such that −∞ is accessible from U∞.
By changing the coordinates of A, one may assume that h satifies

h(θ, t) = (θ, t− 1), ∀(θ, t) ∈ B,

where B = {(θ, t) ∈ A | t ≤ 0}. Clearly B ⊂ U−∞. Let

Z = A \ (U∞ ∪ U−∞).

We shall show that limi→∞ i−1Π1(h̃i(z)) = α for any z ∈ π−1(Z). Clearly this implies
(1) of Theorem 1.6.

Let V be the unbounded component of U∞ ∩ (A \ B). Notice that V ⊂ h(V ). It is
an essential open subannulus of A. Let {cν} be the family of cross cuts of U∞ contained
in ∂B ∩Cl(V ) and let Vν be the connected component of U∞ \ cν which is disjoint from
V . The components Vν are mutually disjoint open discs, which may intersect A \ B.
The cross cut cν is called the gate of Vν . Since U∞ = h(U∞) and V ⊂ h(V ), we have
h(∪νVν) ⊂ ∪νVν .

A component Vν is said to be accessible if −∞ is accessible from Vν . This means
that there is a path γ : (−∞, 0] → Vν such that Π2 ◦ γ(t) → −∞ as t → −∞, where
Π2 : A → R is the projection onto the second factor (the hight function). There is
an accessible component by the assumption. For any Vν , there exists Vν′ such that
h(Vν) ⊂ Vν′ , and if Vν is accessible, so is Vν′ .

Choose a sequence Vi (i ∈ N) from the family {Vν} as follows. Let V1 be any
accessible component. For i > 1, let Vi be the component such that h(Vi−1) ⊂ Vi. Then
any Vi is accessible. The sequence {Vi} may be all distinct or eventually periodic, that
is, there is p ∈ N such that Vi+p = Vi for any large i.

To the gate ci of Vi is associated a closed interval ĉi in the set of prime ends ∂U∗
∞,

defined by

ĉi = ClU∗∞(Vi) ∩ ∂U∗
∞.

Since h(Vi−1) ⊂ Vi, we have h∗∞(ĉi−1) ⊂ ĉi. The cyclic orders of the family {ci} in ∂B

and {ĉi} in ∂U∗
∞ are the same, and there is a homeomorphism ϕ : ∂B → ∂U∗

∞ such that
ϕ(Cl(ci)) = ĉi (∀i).

Fix once and for all a lift Ṽi of Vi to Ã in the following way. Let Ṽ1 be any lift of
V1, and for i > 1, Ṽi the unique lift of Vi which satisfies h̃(Ṽi−1) ⊂ Ṽi for the prescribed
lift h̃. The gate of Ṽi is denoted by c̃i, that is, c̃i is the frontier of Ṽi in π−1(U∞). It is a
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lift of ci. A closed interval˜̂ci of ∂Ũ∗
∞ = π−1(∂U∗

∞) is defined by

˜̂ci = Cl(Ṽi) ∩ ∂Ũ∗
∞.

It is a lift of ĉi, and the map h̃∗∞ defined on ∂Ũ∗
∞ as an extension of h̃, satisfy h̃∗∞ (̃̂ ci−1) ⊂

˜̂ci.
Denote by T the generator of the covering transformations of both Ã and ∂Ũ∗

∞.
There is a lift

ϕ̃ : π−1(∂B) → ∂Ũ∗
∞

of ϕ such that ϕ̃(T j(Cl(c̃i)) = T j (̃̂ ci) (∀i ∈ N, ∀j ∈ Z). We identify ∂Ũ∗
∞ with π−1(∂B)

by ϕ̃−1, and then with R by Π1. Thus T is the right translation by 1.
Let us denote the interval ˜̂ci = [ai, bi], where ai and bi are real numbers by the

above identification. Recall that α = rot(h̃,∞) is, by definition, the rotation number of
h̃∗∞ : ∂Ũ∗

∞ → ∂Ũ∗
∞. Since h̃∗∞ (̃̂ ci−1) ⊂˜̂ci and the length of each˜̂ci is always less than 1,

we have

α = lim
i→∞

i−1ai. (5.1)

Below we consider (ai, bi) to be the interval c̃i ⊂ π−1(∂B) by the above identification. It
is important that (5.1) still holds.

Our aim is to show that limi→∞Π1 ◦ h̃i(z) = α for any z ∈ π−1(Z). But we shall
show only limi→∞Π1 ◦ h̃i(z) ≤ α, the other inequality being shown similarly.

Let us denote by Γi the set of all the simple curves l : R→ Ũ∞ such that

(1) Π2 ◦ l(t) → ±∞ as t → ±∞, and
(2) l(t) ∈ Ṽi for all negative t.

Since Ṽi is the lift of an accessible component, Γi is nonempty for any i ∈ N.

Definition 5.1. Let z ∈ π−1(Z). We say z ≤ Ṽi if there is l ∈ Γi such that z lies
on the left side of l.

See Figure 5.

Lemma 5.2. If z ≤ Ṽi−1 for z ∈ π−1(Z) and i > 1, then h̃(z) ≤ Ṽi.

Proof. If l ∈ Γi−1, then h̃(l) ∈ Γi. The lemma follows from this. ¤

Lemma 5.3. There is M > 0 such that if z ≤ Ṽi (z ∈ π−1(Z)), then Π1(z) ≤
ai + M .

Proof. We shall show the following.

(1) There is M > 0 such that if z ≤ Ṽ1 (z ∈ π−1(Z)), then Π1(z) ≤ a1 + M − 1.

Let us explain why this is sufficient. Considering the action of covering transformations,
(1) implies the following.
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Figure 5. z1 ≤ Vi, z2 ≤ Vi, z3 ˆ Vi.

(2) If z ≤ Tn(Ṽ1) (z ∈ π−1(Z), n ∈ Z) under the similar definition, then Π1(z) ≤
a1 + n + M − 1.

To deduce the lemma from (2), let n be the integer such that a1 + n− 1 ≤ ai < a1 + n.
The last inequality means that the interval Tn(c̃1) lies on the right of c̃i in π−1(∂B), and
therefore z ≤ Ṽi implies that z ≤ Tn(Ṽ1). Then by (2), we have

Π1(z) ≤ a1 + n + M − 1 ≤ ai + M.

Let us start the proof of (1). Let δ be a simple curve in V joining π(a1) to π(b1)
which is not homotopic to π([a1, b1]), and let γ = π([b1, a1 + 1]) ⊂ ∂B. Choose δ so that
the concatenation δ · γ is a simple closed curve which bounds a closed disc D containing
Z in its interior. This is possible because Z is a compactum not separating both ends of
A. There is a lift D̃ of D which is bounded by the concatenation δ̃ · γ̃, where δ̃ is a lift
of δ and γ̃ = [b1, a1 + 1]. Let Z0 = π−1(Z) ∩ D̃. Then we have π−1(Z) =

∐
i∈Z T i(Z0).

We shall show that the point z ∈ π−1(Z) satisfying z ≤ Ṽ1 is contained in T i(Z0)
for some i ≤ 0. Clearly this is sufficient for our purpose since Z0 is compact. Assume
the contrary, say, z ∈ T (Z0). Since z ≤ Ṽ1, there is a curve l in Γ1 which contains
z ∈ T (Z0) on its left side. Let t0 be the smallest value such that l(t0) ∈ (a1, b1). The
curve l is homotopic in the family Γ1 to a curve, still denoted by l, such that l(t0,∞)
is contained in π−1(V ). It can further be homotoped so that l(t0,∞) does not intersect
the disc T (D̃), since π−1(V ) is simply connected.

The other half of the curve, l((−∞, t0)), is contained in Ṽ1. It must intersect [b1 +
1, a1 + 2], the lower boundary of T (D̃), since a point z ∈ T (D) is still on the left side of
the new curve l.

Consider the curve T ◦ l. The two curves l(−∞, t0) and T ◦ l(−∞, t0) must intersect.
See Figure 6. But the former is contained in Ṽ1 while the latter in T (Ṽ1). Since Ṽ1 ∩
T (Ṽ1) 6= ∅, this is impossible. ¤

To finish, let z ∈ π−1(Z). One may assume z ≤ Ṽ1 by replacing z by T−n(z) if
necessary. Then by successive use of Lemma 5.2, we have h̃i(z) ≤ Ṽi for any i ∈ N. Then
by Lemma 5.3, we have
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Figure 6.

Π1(h̃i(z)) ≤ ai + M,

showing that

lim
i→∞

i−1Π1(h̃i(z)) ≤ lim i−1ai = α,

completing the proof of Theorem 1.6 (1).
To show (2), just consider a lift of a point in Z accessible from U−∞. Details are

left to the reader.

6. Appendix: C∞ complete Lyapunov functions.

We fix h ∈ H. Here is a criterion of the chain recurrent set C and a chain transitive
class in terms of attractors and repellors ([4]). A subset Ai in S2 is called an attractor if
there is an open neighbourhood Vi of Ai such that h(Cl(Vi)) ⊂ Vi and

⋂
j≥0 f j(Cl(Vi)) =

Ai. The set Vi is called an isolating block of Ai, and the set A∗i =
⋂

j≥0 f−j(S2 \ Vi) the
dual repellor of A. The totality of attractors is at most countable, and we denote it by
{Ai}i∈I . Then we have ([4])

C =
⋂

i∈I

(Ai ∪A∗i ).

For x, y ∈ C, we also have

x ∼ y ⇐⇒ ∀i ∈ I, either x, y ∈ Ai or x, y ∈ A∗i .

We begin with the following well known fact due to H. Whitney.

Lemma 6.1. For any closed subset P in S2, there is a C∞ function ϕP : S2 → [0, 1]
such that ϕ−1

P (0) = P .
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Lemma 6.2. For any disjoint closed subsets P and Q of S1, there is a C∞ function
ψ : S2 → [0, 1] such that ψ−1(0) = P and ψ−1(1) = Q.

Proof. The function ϕP in Lemma 6.1 can easily be modified so as to satisfy
Q ⊂ ϕ−1

P (1). Define a function ϕQ replacing the roles of P and Q, and set

ψ = 2−1(ϕP + 1− ϕQ). ¤

Recall that {Ai}i∈I is the family of the attractors of h.

Lemma 6.3. For each i ∈ I, there is a C∞ function Hi : S2 → [0, 1] such that

(1) H−1
i (0) = Ai and H−1

i (1) = A∗i .
(2) For any x ∈ S2 \ (Ai ∪A∗i ), we have Hi(h(x)) < Hi(x).

Proof. Let Vi be an isolating block of Ai. Then for any j ∈ Z, there is a C∞

function ψj : S2 → [0, 1] such that ψ−1
j (0) = f j(Cl(Vi)) and ψ−1

j (1) = S2 \ f j−1(Vi).
Choose a sequence cj > 0 such that

∑

j∈N
cj‖ψj‖|j| < ∞,

where ‖ · ‖|j| denotes the C |j| norm. Then the function
∑

j∈Z cjψj is a C∞ function, and
after normalized it satisfies the conditions of Lemma 6.3. ¤

Proof of Proposition 3.2. By an appropriate choice of positive numbers ai,
the function H =

∑
i∈I aiHi is a C∞ function satisfying (1) and (2) of Definition 3.1. If

the indexing set I is infinite, set I = N and choose ai such that ai+1 < 3−1ai (∀i). Then
we obtain that H(C) is closed and that the Lebesgue measure of H(C) is zero. ¤
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