Open Access
April, 2015 Adjunction and singular loci of hyperplane sections
Mauro C. BELTRAMETTI, Antonio LANTERI, Andrew J. SOMMESE
J. Math. Soc. Japan 67(2): 861-875 (April, 2015). DOI: 10.2969/jmsj/06720861

Abstract

Let $(X,L)$ be a smooth polarized variety of dimension $n$. Let $A\in |L|$ be an effective irreducible divisor, and let $\Sigma$ be the singular locus of $A$. We assume that $\Sigma$ is a smooth subvariety of dimension $k\geq 2$, and codimension $c\geq 3$, consisting of non-degenerate quadratic singularities. We study positivity conditions for adjoint bundles $K_X+tL$ with $t\geq n-3$. Several explicit examples motivate the discussion.

Citation

Download Citation

Mauro C. BELTRAMETTI. Antonio LANTERI. Andrew J. SOMMESE. "Adjunction and singular loci of hyperplane sections." J. Math. Soc. Japan 67 (2) 861 - 875, April, 2015. https://doi.org/10.2969/jmsj/06720861

Information

Published: April, 2015
First available in Project Euclid: 21 April 2015

zbMATH: 1319.14007
MathSciNet: MR3340198
Digital Object Identifier: 10.2969/jmsj/06720861

Subjects:
Primary: 14C20 , 14J40 , 14N30
Secondary: 14J17

Keywords: adjunction theory , non-degenerate quadratic singularities , special varieties

Rights: Copyright © 2015 Mathematical Society of Japan

Vol.67 • No. 2 • April, 2015
Back to Top