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Abstract. Let (X, L) be a smooth polarized variety of dimension n.
Let A ∈ |L| be an effective irreducible divisor, and let Σ be the singular locus
of A. We assume that Σ is a smooth subvariety of dimension k ≥ 2, and
codimension c ≥ 3, consisting of non-degenerate quadratic singularities. We
study positivity conditions for adjoint bundles KX +tL with t ≥ n−3. Several
explicit examples motivate the discussion.

Introduction.

Let (X, L) be a smooth polarized variety of dimension n. Let A ∈ |L| be an effective
irreducible divisor. Let Σ = Sing(A) be the singular locus of A. We assume that
Σ is a smooth subvariety of dimension k ≥ 2, consisting of non-degenerate quadratic
singularities. For instance, in the study of projective manifolds with degenerate dual
variety, the defect and the tangency locus of a general tangent hyperplane section provide
examples for the role of k and of Σ respectively. In that specific case, however, (Σ, LΣ)
is forced to be (Pk,OPk(1)), according to a classical result of Bertini [4, Chapter 9,
Number 13, p. 200]. We set c := codimX(Σ) and we further assume that c ≥ 3 (whence,
in particular, n ≥ 5).

A good motivation to consider this setting comes e.g. from the results of [5], [2] and
[12]. In these articles, under suitable conditions on some basic projective invariants, the
geometry of a polarized pair (X, L) is studied in the case when the divisor A is reducible.
Precisely, A is union of r ≥ 2 smooth normal crossing divisors A1, . . . , Ar. In our setting,
forgetting the irreducibility of A, this situation would correspond to c = 2. By the way,
let us just mention that c = 1 would correspond to the case of a non-reduced divisor A.

Our aim is to study positivity conditions for adjoint bundles KX +tL with t ≥ n−3.
We follow (as done in [5], [2]) the adjunction theory approach [1]. To this purpose, let us
present an explicit example to suggest the connection between the singular loci of ample
hypersurfaces we are dealing with in the paper and adjunction theory.

Let X ⊂ Pr be a smooth fivefold, let L = (OPr (1))X , and suppose that |L| con-
tains an irreducible hypersurface A whose singular locus Σ = Sing(A) consists of non-
degenerate quadratic singularities and is isomorphic to the projective plane P2. Let N

be the normal bundle of Σ in X. By adapting a result of Ein we produce an isomorphism
N ∼= N∗ ⊗ LΣ, which implies the relation 2 detN = 3LΣ. Therefore LΣ is divisible by 2
in the Picard group. Suppose that LΣ = OP2(2). Then KΣ = −(3/2)LΣ. We thus see,
by adjunction, that KX +3L restricts trivially to Σ, hence it fails to be ample. Moreover,
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KX + (3 − ε)L is not nef for any ε > 0. In other words, our fivefold (X, L) fits into the
range of polarized manifolds whose nefvalue τ is ≥ 3 = dim(X)− 2. Then, by applying
[1, Chapter 7], we get a short list of possibilities; moreover, a case-by-case analysis shows
that in fact τ = dim(X)− 2, which makes the list very short. E.g., the “Mukai fivefold”
(P5,OP5(2)) offers the concrete example where A is a quadric hypersurface of rank 3.

Here is an outline of the paper. In Section 1 we discuss a generalization of a result
due to Ein (see [6, Theorem 2.2], [11, Theorem 1.2]) on which the article is based. Such
a result implies the key property N ∼= N∗ ⊗ LΣ mentioned in the above example. In
particular, it turns out that if Σ contains a line ` with respect to LΣ, then c must be
even (a generalization of Landman’s parity theorem).

In Section 2 we discuss a consequence of the key result above, which says that if Σ
contains a line ` with respect to L such that N`/Σ is ample, then (Σ, LΣ) = (Pk,OPk(1))
and (X, L) is covered by lines. Moreover, we provide several examples enlightening the
setting we are dealing with.

Section 3 is devoted to the general case, with no assumptions on the parity of c.
We prove in Theorem 3.1 that KX + (n− 1)L is nef and big unless, possibly, c = 4 and
(Σ, LΣ) = (Pk,OPk(1)). Moreover, Σ maps down isomorphically under the first reduction
map, ϕ : X → X ′, of (X, L). We also show that in the special remarkable case in which
(Σ, LΣ) = (Pk,OPk(1)) and L is very ample the nefvalue morphism of (X, L) is a Mori
contraction which maps Σ to a point.

In Section 4 we assume c to be odd. From the generalized Ein result recalled above
it thus follows the crucial fact that Σ does not contain 1-cycles of odd degree with respect
to L (see Corollary 1.2). In Theorem 4.1, we prove that there exists the second reduction
(X̂, D), ψ : X ′ → X̂, of (X, L). Moreover, Σ meets no exceptional divisors of ψ pulled-
back to X via the first reduction morphism ϕ : X → X ′. In Theorem 4.4 we show that
the third adjoint bundle K bX +(n−3)D is nef unless (X̂, D) = (P6,OP6(2)), in which case,
necessarily, (Σ, LΣ) = (P3,OP3(2)). Furthermore, K bX + (n − 3)D is also big, provided
that k ≥ 4.

Finally, it is worth to recall a classical bound for the maximum number of double
points. Let X be a reduced irreducible hypersurface in Pn+1 of degree d with finitely
many singular points, all of which are non-degenerate quadratic singularities. Let δ be
their number. It is then a classical result (see [15] and the recent nice survey paper [7])
that, for any d ≥ n,

δ ≤ 1
2
d
(
(d− 1)n − 1

)
.

We also recall the best known asymptotical bound for the number δ for a surface of
degree d ≥ 4 in P3,

δ ≤ 4
9
d(d− 1)2,

due to Miyaoka [13] (see also [14, p. 164]).
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Notation and terminology.
We work on the complex field C and use the standard terminology in algebraic

geometry.
In particular, we often use the additive notation for the tensor product of line bundles

on a projective variety X. Moreover, for any Q-line bundle L on X we denote by LV

the restriction of L to a subvariety V of X, and by KX the canonical bundle of X, for
X smooth. For any morphism f : X → W we denote by f |Y the restriction of f to Y .
We will denote by ≡ the numerical equivalence of line bundles.

For all adjunction theoretic terminology (in particular for the notions of scrolls,
quadric fibrations, special varieties, reductions, nefvalue, nefvalue morphisms) and results
used throughout the paper we refer to [1].

Acknowledgments. We would like to thank the Department of Applied and
Computational Mathematics and Statistics and the Duncan Chair of Notre Dame Uni-
versity, IN, USA for making our collaboration possible. The second author would also
like to thank the University of Milan (PUR 2009) for partial support.

We thank the referee for helpful suggestions.

1. Non-degenerate quadratic singularities and generalized Ein’s theo-
rem.

Let X be a smooth complex projective variety of dimension n ≥ 2 and let L be
a line bundle on X. Assume that the complete linear system |L| contains an irreducible
reduced divisor A and let s be a section of L defining A. We say that a point x ∈ A

is an isolated non-degenerate quadratic singularity if, with local coordinates x1, . . . , xn,
around x, s can be written in the form

s =
∑

i,j

aijxixj + (degree > 2 terms),

where aij = aji and the Hessian matrix (aij) satisfies det(aij) 6= 0. Now let P be a smooth
subvariety of A of dimension k > 0. We say that P is a locus of non-degenerate quadratic
singularities of A if for every x ∈ P there exist k smooth hypersurfaces H1, . . . , Hk of X

meeting transversally along a submanifold Y ⊂ X such that x = P ∩ Y is an isolated
non-degenerate quadratic singularity of A ∩ Y . This can be rephrased by requiring that
for any point x ∈ P , with an appropriate choice of local affine coordinates (u1, . . . , un)
on X around x (such that P is defined by uk+1 = · · · = un = 0), A is described by

u2
k+1 + u2

k+2 + · · ·+ u2
n = 0.

For instance, if L is the hyperplane line bundle of X ⊂ Pr and A ∈ |L| is a general
tangent hyperplane section, then its contact locus is a locus of non-degenerate quadratic
singularities.

For a smooth projective variety X ⊂ Pr, whose general contact locus P is positive
dimensional, Ein discovered a key property of the normal bundle NP/X in connection
with the hyperplane bundle [6, Theorem 2.2]. More generally, the same property holds
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in the line bundle setting for the normal bundle of any smooth locus of non-degenerate
quadratic singularities.

Theorem 1.1 (Generalized Ein Theorem). Let X be a smooth projective variety
and let L be a line bundle on X with a section defining an irreducible hypersurface A.
Assume that A has only non-degenerate quadratic singularities, constituting a smooth
subvariety P ⊂ X of positive dimension. Then there is an isomorphism

NP/X
∼= N∗

P/X ⊗ LP .

Here and in the following the star stands for the dual. Furthermore, the claimed
isomorphism is symmetric (see [11, Theorem 1.2]), but we do not need this property in
the present paper. We will refer to it as the Ein isomorphism: it will play a crucial role
in the sequel. The proof runs essentially as in [1, Theorem 14.4.1], but we include it for
the convenience of the reader.

Proof. Let s ∈ H0(L) be the section defining A; then its first jet j1(s) is zero on
P . Consider the exact sequence

0 → T
∗(2)
X ⊗ L → J2(L) α→ J1(L) → 0,

where T
∗(2)
X is the second symmetric power of the cotangent bundle, Jm(L) is the m-

th jet bundle of L, and α is the natural surjection given by truncation (see [10] for
more details). Let dim(X) = n. Then around every point x ∈ P we can choose local
coordinates u1, . . . , un on X such that P is defined by uk+1 = · · · = un = 0, where
k = dim(P ) > 0. Now look at the second jet j2(s). Since α(j2(s)) = j1(s) is trivial on
P we have (j2(s))P ∈ H0(P, (T ∗(2)X ⊗L)P ). On the other hand, since s vanishes on P all
partial derivatives in the ui directions (i = 1, . . . , k) are zero. This shows that in fact

(j2(s))P ∈ H0
(
P, N

∗(2)
P/X ⊗ LP

) ⊆ H0
(
P, (T ∗(2)X ⊗ L)P

)
.

Recalling that

N
∗(2)
P/X ⊗ LP ⊆ N∗

P/X ⊗N∗
P/X ⊗ LP

∼= Hom(NP/X , N∗
P/X ⊗ LP ),

we thus see that j2(s) defines a homomorphism h(s) : NP/X → N∗
P/X ⊗ LP . Note that

h(s) is represented at every point x ∈ P by the Hessian matrix of s with respect to the
coordinates uk+1, . . . , un. But this matrix has maximal rank, since x is a non-degenerate
quadratic singularity. Hence h(s) is an isomorphism. ¤

Theorem 1.1 has some immediate consequences, crucial for our purpose.

Corollary 1.2. Assumptions and notation as in Theorem 1.1. Let c be the codi-
mension of P in X. Then we have

1. cLP = 2 det NP/X ;
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2. KP = (KX + (c/2)L)P in Pic(P );
3. If c is odd then P does not contain 1-cycles of odd degree (w.r.t. L).

Proof. Since NP/X is a rank c vector bundle on P , Theorem 1.1 yields

det NP/X = det(N∗
P/X) + cLP

which proves 1), whence 3). Now, adjunction formula KP = (KX)P +det NP/X gives 2).
¤

The following observation can be regarded as a generalization of the so-called Land-
man’s parity theorem.

Remark 1.3. Notation as in Theorem 1.1. Suppose that P contains a line ` with
respect to L (that is, ` is a smooth rational curve with L · ` = 1). Then the restriction
of the normal bundle NP/X to ` has the following form

(NP/X)` =
u⊕

i=1

O`(−xi)⊕O⊕v
` ⊕O`(1)⊕v ⊕

u⊕

i=1

O`(1 + xi),

for positive integers i, i = 1, . . . , u. In particular, the codimension of P in X must be
even.

In fact, letting c := codimX(P ) we can write (NP/X)` = ⊕c
j=1O`(αj). Then Theo-

rem 1.1 implies that for every j there exists another index i such that αj = 1 − αi. In
particular, this says that the number, say v, of summands of type O`(1) equals that of
the summands of type O`. Moreover, for every summand of degree different from 0 and
1, say −xi, there is another summand of degree 1 + xi. This proves the assertion. In
particular, c = 2(u + v).

2. Set-up, preliminary results and examples.

First, let us fix the context of work.

2.1. Let (X, L) be a smooth polarized variety of dimension n. Let A ∈ |L| be an
effective irreducible divisor. Let Σ = Sing(A) be the singular locus of A. We assume
that Σ is a smooth subvariety of dimension k ≥ 2, consisting of non-degenerate quadratic
singularities. We set c := codimX(Σ) and we further assume that c ≥ 3 (whence, in
particular, n ≥ 5). Then, according to what we said before, for any point x ∈ Σ, A can
be described by

u2
1 + u2

2 + · · ·+ u2
c = 0,

where (u1, u2, . . . , un) are suitable local affine coordinates on X around x (with Σ defined
by u1 = · · · = uc = 0 at x).

Let us point out the following fact.
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Lemma 2.2. Let π : X → Y be a surjective morphism from a smooth projective
variety X to a normal projective variety Y , let L be an ample line bundle on X and
suppose that (F, LF ) = (Pr,OPr (1)) with r ≥ 1 for the general fiber F of π. Let A ∈ |L|
be any divisor. Then A cuts a general fiber F along a smooth element. In particular,
π(Sing(A)) is a proper algebraic subset of Y .

Proof. Just note that A cannot contain the general (hence every) fiber of π. ¤

When L is very ample we can prove the following consequence of Theorem 1.1, which
will be applied in the proof of Proposition 3.4 when (Σ, LΣ) = (Pk,OPk(1)).

Proposition 2.3. Assume that L is very ample. If Σ contains a line ` with respect
to L such that N`/Σ is ample, then (X, L) is covered by lines.

Proof. By adjunction, KΣ · ` = −2 − deg(N`/Σ) ≤ −2 − (k − 1) = −(k + 1),
since the normal bundle N`/Σ is ample, of rank k − 1. Thus (KΣ + (k + 1)LΣ) · ` ≤ 0.
This implies that KΣ + (k + 1)LΣ is not ample and then (Σ, LΣ) = (Pk,OPk(1)) (e.g.,
see [1, Theorem 7.2.1]). Therefore, if L embeds Σ into a projective space, say P, the
variety Σ becomes a linear space in P. Thus N∗

Σ/X(1) is spanned, being a quotient of the
trivial bundle N∗

Σ/P(1). Theorem 1.1 then applies to give spannedness of NΣ/X . Since
H1(`,N`/Σ) = 0, from the normal bundle sequence

0 → N`/Σ → N`/X → (NΣ/X)` → 0

it thus follows that N`/X is spanned, too. From the tangent-normal bundle sequence

0 → T` → (TX)` → N`/X → 0

we then conclude that (TX)` is spanned. Therefore ` induces a covering family on X [9,
II, Section 3, IV, (1.9)]. ¤

We provide now several examples illustrating the hypotheses made. Assumptions
and notation as in Paragraph 2.1.

Example 2.4 (A general construction). Let X be a smooth projective variety of
dimension n, choose ample and spanned line bundles H1,H2, . . . , Hc on X such that
2(Hi − Hj) = 0, for every i, j, and set L := 2Hi, i = 1, . . . , c. Take global sections
si ∈ Γ(X, Hi) such that the divisors s−1

i (0) intersect transversally everywhere. Then
consider the linear system defined by the vector subspace 〈s2

1, . . . , s
2
c〉 ⊆ Γ(X, L). Let

s = λ1s
2
1 + · · ·+ λcs

2
c ,

λi ∈ C, i = 1, . . . , c. By Bertini’s theorem, for general (λ1, . . . , λc) ∈ Cc, we have
that the divisor A := s−1(0) is smooth away from the set-theoretic base locus, say
Σ = {s1 = · · · = sc = 0}, of this linear system. Clearly, codimX(Σ) = c and Σ ⊂ Sing(A).

Note that for c = 2, s = λ1s
2
1 + λ2s

2
2 = (αs1 + iβs2)(αs1 − iβs2), where α2 = λ1
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and β2 = λ2. Hence any A as above is reducible. Therefore, to have an irreducible
hypersurface A we need c ≥ 3.

We claim that each point x ∈ Σ is a non-degenerate quadratic singularity for A, and
Σ = Sing(A). Indeed, if (u1, u2, . . . , un) are local coordinates on X at x, we may assume
that s1 = u1, . . . , sc = uc (since the divisors s−1

i (0) intersect transversally). Then, locally
near the point x, the divisor A can be expressed by

λ1u
2
1 + · · ·+ λcu

2
c = 0,

showing the claim.
For example, let X = P3, Hi = OP3(m), i = 1, 2, 3, and L = OP3(2m) for some

positive integer m. Consider a general element A ∈ |L|. Thus the singular locus Sing(A)
consists of m3 = H1 · H2 · H3 isolated non-degenerate quadratic singularities. Let us
point out that the value m3 is considerably less than the upper bound

4
9
(2m(2m− 1)2) =

32
9

m3 + (degree < 3 terms)

given by Miyaoka’s inequality recalled in the introduction.

The general construction as in the Example 2.4 specializes to the following basic
cases.

Example 2.5 ((Σ, LΣ) = (Pk,OPk(2))). Let X = Pn, Hi ∈ |OPn(1)|, i = 1, . . . , n−
k, and L = OPn(2). Then choose n − k general sections si ∈ Γ(Pn,OPn(1)), let s =∑n−k

i=1 λis
2
i and set A := s−1(0) ∈ |OPn(2)|. Thus A is a quadric hypersurface of rank

n − k and Sing(A) is a smooth Pk consisting of non-degenerate quadratic singularities,
with LPk = OPk(2).

Example 2.6 ((Σ, LΣ) = (Qk,OQk(2))). Let X be a smooth n-dimensional quadric
Qn in Pn+1 and H ∈ |OQn(1)|. Choose n − k general sections si ∈ Γ(Qn,OQn(1)), let
s =

∑n−k
i=1 λis

2
i and set A := s−1(0) ∈ |OQn(2)|. Then A is a complete intersection of

type (2, 2) in Pn+1 and the singular locus of A is

Sing(A) =
n−k⋂

i=1

s−1
i (0) = Pk+1 ∩Qn,

that is, a k-dimensional smooth quadric Qk, consisting of non-degenerate quadratic sin-
gularities.

Example 2.7 ((Σ, LΣ) a Pk−1-bundle over a smooth curve C, LPk−1 = OPk−1(2)).
Let X be a Pn−1-bundle over a smooth curve Y , and let H be the tautological line bundle.
Suppose that H is ample and spanned and take n − k general divisors Hi in the linear
system |H|. The transversal intersection of such divisors Hi, i = 1, . . . , n− k, intersects
each fiber F = Pn−1 of the bundle in a linear Pk−1 ⊂ F . Let now L = 2H and consider
a general element A in the sublinear system of |L| generated by 2H1, . . . , 2Hn−k. The
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intersection A∩F is therefore a quadric Qn−2 ⊂ F which is singular along the Pk−1 ⊂ F ,
the locus of non-degenerate quadratic singularities for the quadric Qn−2.

More generally, if C has positive genus and H is sufficiently ample, we can choose
Hi ∈ |H + ηi|, where ηi is a 2-torsion element in Pic(X). In this case, the smooth
hypersurfaces Hi define distinct line bundles but 2Hi ∈ |L| for every i.

Note that for k = 1 we get a Qn−2-fibration A → Y which is singular along a section
of X → Y .

Note also that this construction extends to the case when Σ is a Pd-bundle over a
smooth projective variety Z of dimension k − d, and LF = OPd(2) for each fiber F .

Example 2.8 ((Σ, LΣ) a quadric fibration over a smooth curve, LQk−1 = OQk−1(2)).
Let (P,H) be an (n + 1)-dimensional scroll over a smooth curve Y , with H ample and
spanned. Let X ∈ |2H| be a smooth element, so that (X, H) is an n-dimensional quadric
fibration over Y , where H = HX . Take n − k general divisors Hi in the linear system
|H|. The transversal intersection of such divisors Hi, i = 1, . . . , n − k, intersects any
general fiber F = Qn−1 of the quadric fibration along a quadric Q := Qk−1 ⊂ F . Let
now L = 2H and consider a general element A in the linear subsystem of |L| generated by
2H1, . . . , 2Hn−k. Therefore A ∩ F is a complete intersection V of type (2, 2) in F which
is singular along the quadric Q, the locus of non-degenerate quadratic singularities for
V .

Finally we point out that the construction in Example 2.4 is stable under general
finite coverings.

Example 2.9. Assumptions and notation as in Example 2.4. Let π : X ′ → X be
a finite covering branched along a smooth hypersurface ∆ ⊂ X transversal to the zero
loci s−1

i (0), i = 1, 2 . . . , c. Let L′ := π∗L, A′ := π∗A and Σ′ := π∗Σ. Then the same
conclusions as in Example 2.4 hold true for X ′, L′, and Σ′, provided that Σ ∩∆ = ∅.

3. The general case: positivity of the first adjoint bundle.

The first result we prove in this section deals with the nefness and bigness of the first
adjoint bundle for a polarized pair (X, L) satisfying the assumptions as in Paragraph 2.1.
Compare with Theorem 4.1, concerned with the second adjoint bundle for c = codimX(Σ)
odd.

Theorem 3.1. Let (X, L) be a smooth polarized variety of dimension n. Let A be
an irreducible member of |L| whose singular locus Σ = Sing(A) consists of non-degenerate
quadratic singularities. Assume that Σ is smooth of dimension k ≥ 2 and that c =
codimX(Σ) ≥ 3. Then the first reduction (X ′, L′), ϕ : X → X ′, exists, unless, possibly,
if c = 4 and (Σ, LΣ) = (Pk,OPk(1)). Moreover, Σ meets no exceptional divisors of ϕ.

Proof. We systematically use the adjunction process described in [1, Chapter 7].
By Corollary 1.2(2) we have

(KX)Σ = KΣ − c

2
LΣ. (1)
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Let τ be the nefvalue of (X, L). If τ = n + 1, i.e., if KX + (n + 1)L is trivial, then
we get from (1)

OΣ = (KX + (n + 1)L)Σ = KΣ +
(

k + 1 +
c

2

)
LΣ,

which contradicts the ampleness of KΣ+(k+1+(c/2))LΣ since k+1+(c/2) > dim(Σ)+1
(see [1, Theorem 7.2.1]).

Now suppose that n − 1 < τ ≤ n. Since n = k + c ≥ 5, it cannot be (X, L) =
(P2,OP2(2)), so that (X, L) is either (Qn,OQn(1)) or a scroll over a smooth curve (see
[1, Proposition 7.2.2 and Theorem 7.2.4]). In both cases, as k ≥ 2, there exists a curve
C ⊂ Σ such that KX + nL restricts trivially to C. Therefore by (1) we get

OC = (KX + nL)C =
(

KΣ +
(

k +
c

2

)
LΣ

)

C

,

which is a contradiction again since c ≥ 3. We thus conclude that KX + (n− 1)L is nef,
i.e., τ ≤ n − 1. If it is not big then (X, L) is either a Del Pezzo manifold, or a quadric
fibration over smooth curve, or a scroll over a smooth surface, according to whether the
image of the nefvalue morphism φ of (X, L) has dimension 0, 1, or 2 (see [1, Theorem
7.3.2]). We know that in all these cases there exists a curve C ⊂ Σ to which KX +(n−1)L
restricts trivially. This is obvious in the first two cases, while in the third one it follows
from the fact that φ(Σ) has dimension ≤ 1 according to Lemma 2.2. By using (1) again,
we get

OC = (KX + (n− 1)L)C =
(

KΣ +
(

k +
c

2
− 1

)
LΣ

)

C

.

Once again, this is a contradiction if c ≥ 5, so that 3 ≤ c ≤ 4. Moreover, since c ≥ 3,
the above relation allows us to conclude that KΣ + kLΣ is not nef, which implies that
(Σ, LΣ) = (Pk,OPk(1)) (see [1, Proposition 7.2.2]). Therefore case c = 3 cannot occur
by Corollary 1.2(3). Hence c = 4 and in addition we see that Σ must be contained in a
fiber of the morphism φ. In conclusion, KX + (n − 1)L is nef and big unless c = 4 and
(Σ, LΣ) = (Pk,OPk(1)).

Thus the first reduction morphism, ϕ : X → X ′, exists. Let E = Pn−1 be any
exceptional divisor. If Σ meets E, then, since E is a divisor and k ≥ 2, we can find a
curve C contained in Σ∩E such that (KX + (n− 1)L)C = OC . Once again, relation (1)
yields

(
KΣ +

(
k +

c

2
− 1

)
LΣ

)

C

= OC .

This leads to the usual contradiction as soon as c ≥ 5. Moreover, if c = 3, the above
equality shows that KΣ + (k + (1/2))LΣ is not ample. On the other hand it is nef being
the restriction of a nef line bundle. This says that the nefvalue of the polarized pair
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(Σ, LΣ) is equal to k +(1/2), contradicting [1, Proposition 7.2.2]. We thus conclude that
Σ ∩ E = ∅, as we want. ¤

The following example explains why we required c ≥ 3 in Theorem 3.1.

Example 3.2. Let’s focus on the case (X, L) = (Qn,OQn(1)) in the proof of
Theorem 3.1. Here

OΣ = (KX + nL)Σ = KΣ +
(

k +
c

2

)
LΣ,

by Corollary 1.2(2). Note that, if c = 2, then KΣ + (k + 1)LΣ is not ample. Therefore
(Σ, LΣ) = (Pk,OPk(1)). Recalling that k ≥ 2 one has n ≥ 4. On the other hand, linear
spaces contained in a smooth quadric Qn cannot have dimension exceeding n/2. Thus
n− 2 = k ≤ n/2, i.e. n ≤ 4, whence n = 4. In this case an element A ∈ |L| is a quadric
3-fold; since it has to be singular along a P2 we infer that A is reducible (compare this
with what we said in the introduction concerning the case c = 2).

Motivated by the exception in Theorem 3.1, we now discuss the case when (Σ, LΣ) =
(Pk,OPk(1)).

First, note the following fact. Let ` be a line in Σ = Pk. Then, by using Corollary
1.2(1), we infer that

−KX · ` = (−KΣ + detNΣ/X) · ` = −KΣ · ` +
c

2
= k + 1 +

c

2
=

n

2
+ 1 +

k

2
. (2)

Remark 3.3. If (Σ, LΣ) = (Pk,OPk(1)), then (X, L) cannot be (Pn/2 × Pn/2,

O(1, 1)). Otherwise, since any line ` of this product is contained in one of the factors,
we would get

−KX · ` = O
(

n

2
+ 1,

n

2
+ 1

)
· ` =

n

2
+ 1.

This is not possible in view of relation (2), since k is positive.

Proposition 3.4. Let (X, L) be a smooth polarized variety, with L very ample.
Let τ and φ : X → Y be the nefvalue and the nefvalue morphism of the pair (X, L)
respectively. Let A be an irreducible member of |L| whose singular locus Σ = Sing(A)
consists of non-degenerate quadratic singularities. Assume that (Σ, LΣ) = (Pk,OPk(1)),
k ≥ 1. Then

τ = n + 1− c

2
,

where c = codimX(Σ); moreover, φ is a Mori contraction which maps Σ to a point.

Proof. Let ` ⊂ Σ be a line. As N`/Σ = O`(1)⊕(k−1) and L is very ample, the
assumptions of Proposition 2.3 are satisfied. Therefore the family F defined by ` covers
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X; moreover, F is a non-breaking family since L · ` = 1, and KX · ` < 0 by (2). All this
says that the first two of the three assumptions in [3, (2.0)] are satisfied.

Let Fx denote the set of curves from the family F passing through x and observe
that in our case

dim(Fx) = h0(N`/X(−1)) = deg(N`/X) = −KX · `− 2,

for any point x ∈ X. This says that the third assumptions in [3, (2.0)] is satisfied as
well. Furthermore, relation (2) shows that −KX · `− 2 > (n− 2)/2. Thus [3, Theorem
(2.3)], combined with (2) again, applies to give the expression of τ and to conclude that
φ contracts each line ` ⊂ Σ = Pk to a point. This clearly implies that φ contracts Σ to
a point, as we want. ¤

The previous result agrees with the “obvious” expectation that for high values of
c the polarized pair (X, L) presents a good behaviour for the adjoint bundles. This is
illustrated by the following statement (recall that τ is the smallest rational number such
that KX + τL is nef).

Corollary 3.5. Notation as in Proposition 3.4. Then:

1. KX + nL is nef.
2. KX + (n− 1)L is nef unless c ≤ 3.
3. KX + (n− 2)L is nef unless c ≤ 5.

On the other hand, for small values of c, the pair (X, L) tends to be one of the
special varieties arising from adjunction theory. In particular, for c = 2, (X, L) is either
(Qn,OQn(1)) or a scroll over a smooth curve; for c = 3 we get τ = n − (1/2) which is
impossible since n ≥ 4 (see [1, Theorem 7.2.4]). If c = 4, then τ = n− 1, so that (X, L)
is one of the pairs described in [1, Theorem 7.3.2].

4. Odd codimension: positivity of the second and third adjoint bundle.

Whenever the locus Σ of non-degenerate quadratic singularities is of odd codimension
more can be said. This section is devoted to this case.

First note that, as a consequence of Theorem 3.1, the first reduction morphism
ϕ : X → X ′ is an isomorphism in a neighborhood of Σ. In particular, we can identify Σ
with its image Σ′ := ϕ(Σ) in the first reduction (X ′, L′) of (X, L), and all properties of
NΣ/X expressed by Corollary 1.2 hold true for the normal bundle of Σ′ in X ′ w.r.t. L′.
Moreover, Σ′ ⊆ Sing(ϕ(A)). We have the following result.

Theorem 4.1. Let (X, L) be a smooth polarized variety of dimension n. Let A be
an irreducible member of |L| whose singular locus Σ = Sing(A) consists of non-degenerate
quadratic singularities. Assume that Σ is smooth of dimension k ≥ 3, with odd codimen-
sion c := codimX(Σ) ≥ 3. Then there exists the second reduction (X̂, D), ψ : X ′ → X̂,
of (X, L). Moreover, Σ meets no exceptional divisors of ψ pulled-back to X via the first
reduction morphism ϕ : X → X ′.
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Proof. By what we said before we can assume that τ < n − 1, where τ denotes
now the nefvalue of the first reduction (X ′, L′). Let ϕ : X → X ′ and Σ′ = ϕ(Σ) be
as before. We continue with the adjunction process according to [1, Chapter 7]. By
Corollary 1.2(2) and the above discussion we have

(KX′)Σ′ = KΣ′ − c

2
L′Σ′ . (3)

Since n ≥ 6, the range n−2 < τ < n−1 is ruled out by [1, Theorem 7.3.4]. We thus
conclude that KX′ +(n−2)L′ is nef, i.e., τ ≤ n−2. If it is not big then (X ′, L′) is either
a Mukai manifold, or a Del Pezzo fibration over smooth curve, or a quadric fibration over
a normal surface, or a scroll over a normal threefold, according to whether the image of
the nefvalue morphism φ′ of (X ′, L′) has dimension 0, 1, 2, or 3 (see [1, Theorem 7.5.3]).

We claim that there exists a curve C ⊂ Σ′ to which KX′+(n−2)L′ restricts trivially.
This is obvious in the first two cases. In the third case, let F be a general fiber of the
nefvalue morphism φ′. From the inequality

dim(Σ′ ∩ F ) ≥ k + (n− 2)− n = k − 2

we are done since k ≥ 3. In the fourth case the assertion follows from the fact that φ′(Σ′)
has dimension ≤ 3 according to Lemma 2.2, recalling that Σ′ ⊆ Sing(ϕ(A)). This proves
the claim. Therefore from (3) we get

OC = (KX′ + (n− 2)L′)C =
(

KΣ′ +
(

k − 2 +
c

2

)
L′Σ′

)

C

.

This contradicts the ampleness of KΣ′+(dim(Σ′)+1)L′Σ′ as soon as k−2+(c/2) > k+1,
i.e. c ≥ 7. Therefore, either c = 5 or c = 3. If c = 5, then KΣ′ + kL′Σ′ is not ample,
whence (Σ′, L′Σ′) = (Pk,OPk(1)) (see [1, Theorem 7.2.1]). But this is impossible by
Corollary 1.2(3). If c = 3, then KΣ′ +(k−1)L′Σ′ is not nef. Therefore [1, Theorem 7.2.4]
applies to rule out this case.

We thus conclude that KX′+(n−2)L′ is nef and big; so the second reduction (X̂, D),
ψ : X ′ → X̂, of (X, L) exists. In general, X̂ is singular with moderate singularities, and
D := ψ∗(L′)∗∗ (the double dual) is a 2-Cartier divisor [1, Section 7.5].

As to the second part of the statement, recall that (see [1, Theorem 7.5.3, 5)] any
irreducible component of the exceptional locus of ψ : X ′ → X̂ is one of the following:

1. a divisor E which contracts to a point;
2. a Pn−2-bundle E → B via ψ|E onto some curve B in X̂.

Suppose, by contradiction, that Σ′ ∩ E 6= ∅. Then we have dim(Σ′ ∩ E) ≥ k − 1 in the
former case. In the latter case, Σ′ must intersect a fiber f of ψ|E so that dim(Σ′ ∩ f) ≥
k + (n − 2) − n = k − 2. Since k ≥ 3, in both cases we find a curve C ⊂ Σ′ such that
OC = (KX′ + (n− 2)L′)C , which leads to the same contradiction as above. ¤

Remark 4.2 (dim(Σ) = 2). By looking over the proof above, we see that Theorem
4.1 holds true in case k = 2 unless, possibly, when the nefvalue morphism φ′ gives to
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(X ′, L′) the structure of either a quadric fibration over a normal surface or a scroll over
a normal 3-fold. Actually, in these cases we cannot grant that dim(Σ′ ∩F ) ≥ 1 for some
fiber F of φ′.

As a consequence of Theorem 4.1, when studying the structure of Σ, we may assume
to work on the second reduction (X̂, D) of (X, L) for appropriate c, namely, c odd and
≥ 3. This is exactly what we do in the remaining part of this section, where we study
positivity conditions for the third adjoint bundle.

First let us note the following general fact (which we will use for c odd and t = k−2).

Lemma 4.3. Let (X, L) be a smooth polarized variety of dimension n. Let A be an
irreducible member of |L| whose singular locus Σ = Sing(A) consists of non-degenerate
quadratic singularities. Assume that Σ is smooth of dimension k, with codimension
c := codimX(Σ) ≥ 3. Suppose that KΣ + tLΣ is nef for some positive rational number t.
Then (KX + (t + c− 1)L) · C > 0 for every curve C ⊂ Σ.

Proof. By Corollary 1.2(2) we can write

(KX + (t + c− 1)L) · C =
(

KX +
c

2
L +

(
t +

c

2
− 1

)
L

)
· C

= (KΣ + tLΣ) · C +
(

c

2
− 1

)
LΣ · C ≥

(
c

2
− 1

)
LΣ · C > 0,

where the first inequality comes from the nefness assumption and the latter from the
ampleness of L and the fact that c ≥ 3. ¤

By Theorem 4.1 we know that, if Σ has dimension k ≥ 3 and odd codimension c ≥ 3,
then there exists the second reduction of (X, L). Now, we study nefness and bigness of
the third adjoint bundle.

Theorem 4.4. Under the assumptions as in Theorem 4.1, the following hold true.

1. The third adjoint bundle K bX +(n−3)D is nef unless (X̂, D) = (P6,OP6(2)), in which
case (Σ, LΣ) = (P3,OP3(2)).

2. If KΣ + (k − 2)LΣ is nef, then K bX + (n− 3)D is also big, provided that k ≥ 4.

Proof. Set D = ψ∗(L′)∗∗ and recall that D is a 2-Cartier divisor on X̂ such that
KX′ + (n − 2)L′ = ψ∗K , where K is an ample line bundle Q-linearly equivalent to
K bX + (n− 2)D [1, Lemma 7.5.8]. Moreover, D is φ̂-ample, where φ̂ is now the nefvalue
morphism of (X̂, K ). More precisely, the following isomorphism of rank 1 reflexive
sheaves

(n− 2)(K bX + (n− 3)D) ∼= (K bX + (n− 3)K ) (4)

plays a key role [1, Corollary 7.6.2]. In particular, it shows that K bX + (n− 3)D is nef if
and only if K bX + (n− 3)K is nef. Thus [1, Section 7.7] says that K bX + (n− 3)D is nef
unless (X̂, K ) = (P6,OP6(1)), in which case D = OP6(2), in view of the above relations.
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By Theorem 4.1 we also know that the composite map ψ ◦ ϕ : X → X̂ is an
isomorphism in a neighborhood U of Σ in X, hence LU

∼= D(ψ◦ϕ)(U). Letting Σ̂ :=
(ψ ◦ ϕ)(Σ), and taking into account that 6 = n = k + c, with k, c ≥ 3, we thus get
(Σ̂, DbΣ) = (P3,OP3(2)), leading to the first assertion.

We prove now the second assertion. As n ≥ 6 (in fact n ≥ 7 as k ≥ 4) we know
that K bX + (n− 3)K is also big except for five exceptional cases listed in [1, Proposition
7.7.6], which correspond to the values m = 0, . . . , 4 of the dimension of the image of the
nefvalue morphism φ̂ of (X̂, K ). Note that the bigness of K bX + (n− 3)K is equivalent
to that of K bX + (n− 3)D in view of [1, Corollary 7.6.2]. Let F be the pullback to X via
ψ ◦ ϕ of a general fiber of φ̂. If 0 ≤ m ≤ 3, due to the assumption k ≥ 4, we see that

dim(Σ ∩ F ) = k + n−m− n = k −m ≥ 1.

Hence there is a curve C ⊂ Σ such that K bX + (n − 3)K is trivial on Ĉ = (ψ ◦ ϕ)(C).
Then K bX + (n− 3)D is trivial on Ĉ as well, by (4). Coming back to X, this implies

(KX + (n− 3)L)C = OC . (5)

If m = 4 we know from [1, Proposition 7.7.6] that (X̂, K ) is a scroll over a normal 4-fold
W . In particular, the scroll projection p : X̂ → W induces a Pn−4-bundle over a Zariski
dense open subset W0 of W and K restricts as OPn−4(1) to any fiber of it. Thus Lemma
2.2 (used for t = k − 2) allows us to conclude that there is a fiber of φ̂ such that for the
corresponding F on X, Σ∩F has positive dimension even in this case. Therefore we can
find a curve C ⊂ Σ satisfying (5) for m = 4 as well. On the other hand, equation (5)
contradicts Lemma 4.3. This proves the second assertion. ¤

Remark 4.5. Notation as above. By studying the adjunction mapping on Σ we
can produce complete effective lists of all the exceptions to the nefness and bigness of
KΣ + (k − 2)LΣ for k ≥ 3. This would allow us to make concrete the assumption made
in Lemma 4.3 and used in Theorem 4.4(2).

Note added in proof (March 1, 2015). For further progress relying on a general-
ization of Theorem 1.1, we refer to: M.C. Beltrametti, A. Lanteri and A.J. Sommese,
Adjunction and singular loci of hyperplane sections, II, Rend. Circ. Mat. Palermo, 63
(2014), 247–255.
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