Open Access
January, 2007 Secondary Novikov-Shubin invariants of groups and quasi-isometry
Shin-ichi OGUNI
J. Math. Soc. Japan 59(1): 223-237 (January, 2007). DOI: 10.2969/jmsj/1180135508

Abstract

We define new L 2 -invariants which we call secondary Novikov-Shubin invariants.We calculate the first secondary Novikov-Shubin invariants of finitely generated groups by using random walk on Cayley graphs and see in particular that these are invariant under quasi-isometry.

Citation

Download Citation

Shin-ichi OGUNI. "Secondary Novikov-Shubin invariants of groups and quasi-isometry." J. Math. Soc. Japan 59 (1) 223 - 237, January, 2007. https://doi.org/10.2969/jmsj/1180135508

Information

Published: January, 2007
First available in Project Euclid: 25 May 2007

zbMATH: 1132.46042
MathSciNet: MR2302670
Digital Object Identifier: 10.2969/jmsj/1180135508

Subjects:
Primary: 58J50
Secondary: 60C05

Keywords: Cayley graphs , L^{2}-invariants , Novikov-Shubin invariants , quasi-isometry , Random walk

Rights: Copyright © 2007 Mathematical Society of Japan

Vol.59 • No. 1 • January, 2007
Back to Top