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Abstract. We define new L2-invariants which we call secondary Novikov-
Shubin invariants. We calculate the first secondary Novikov-Shubin invariants of
finitely generated groups by using random walk on Cayley graphs and see in partic-
ular that these are invariant under quasi-isometry.

1. Introduction.

In this paper we study secondary Novikov-Shubin invariants. These new L2-
invariants are naturally defined by modifying the original definition of Novikov-Shubin
invariants (Section 2), where L2-invariants mean L2-Betti numbers, Novikov-Shubin in-
variants, L2-torsions and so on. By using secondary Novikov-Shubin invariants, we can
study density functions with infinite Novikov-Shubin invariants. It is known that the first
Novikov-Shubin invariants of finitely generated groups classify infinite virtually nilpotent
groups ([6, Lemma 2.46]). By using the first secondary Novikov-Shubin invariants, we
would like to study finitely generated groups which are not virtually nilpotent. We prove
the following in Section 4.

Theorem 1.1. Let G be an infinite amenable finitely generated group and 0 < a <

1. Then,

(i) β1(G) = 0 if and only if p(n) � exp(−nb) for any b ∈ (0, 1),
(ii) β1(G) = 2a

1−a if and only if p(n) ¹ exp(−nb) for any b ∈ (0, a) and p(n) �
exp(−nb) for any b ∈ (a, 1),

(iii) β1(G) = ∞ if and only if p(2n) ¹ exp(−nb) for any b ∈ (0, 1).

In particular the first secondary Novikov-Shubin invariants of finitely generated
groups are invariant under quasi-isometry.

Here β1(G) is the first secondary Novikov-Shubin invariant of G (Section 3) and p(n)
is the asymptotic type of the probability of return after n steps (n ∈ 2Z) for the random
walk on the Cayley graph of G (Section 4). Also a relation ¹ is defined in Section 4. By
using the above theorem, we can calculate some examples.
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Example 1.2. For any non-trivial finite group U and any positive integer d the
asymptotic type of the wreath product group U oZd is exp(−nd/d+2) ([9, Theorem 3.5]).
Here the wreath product is the semiproduct (⊕i∈ZdU)oZd, where Zd acts on ⊕i∈ZdU

by translation. Thus we have

β1(U oZd) = d

by the above theorem. In particular any positive integer can occur as the first secondary
Novikov-Shubin invariants of finitely generated groups. In the case where d = 1, we know
the spectral density function of the Laplacian of the Cayley graph of U oZ ([3, Corollary
3], [2, Theorem 5], [1, Theorem 1.1]). Hence we can also get

β1(U oZ) = 1

by a direct calculation.

Example 1.3. The asymptotic type of the wreath product group Z o Z is
exp(−n1/3(ln(n))2/3) ([9, Theorem 3.11]). Thus we have

β1(Z oZ) = 1.

Though exp(−n1/3(ln(n))2/3) and exp(−n1/3) are not asymptotically equivalent, their
first secondary Novikov-Shubin invariants are equal.

Gromov indicates that Novikov-Shubin invariants of a certain class of groups may
be invariant under quasi-isometry ([4, p. 241]). Naturally we can formulate the following
conjecture.

Conjecture 1.4. Secondary Novikov-Shubin invariants of groups of finite type
are invariant under quasi-isometry.

The author does not know whether these conjectures hold. Novikov-Shubin invari-
ants of amenable groups are studied by Roman Sauer ([10]).

The author would like to express his gratitude to his adviser Professor Tsuyoshi Kato
for numerous suggestions. The author would like to express his gratitude to Professor
Masaki Izumi who taught him the outline of the proof of Claim 4.5.

2. Secondary Novikov-Shubin invariants of density functions.

We will recall the definition of density functions, their L2-Betti numbers and their
Novikov-Shubin invariants. For the details, we refer to [6, Chapter 1, 2].

Definition 2.1. A function F : [0,∞) → [0,∞] is called a density function if it
is monotone non-decreasing and right-continuous. We say that F is Fredholm if there
exists λ > 0 such that F (λ) < ∞, in which case we denote its L2-Betti number as
b(2)(F ) := F (0) and its Novikov-Shubin invariant as
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α(F ) := lim inf
λ→0+

ln
(
F⊥(λ)

)

ln(λ)
,

provided that F (λ) > b(2)(F ) holds for all λ > 0 and otherwise, α(F ) := ∞+. Here we
write F⊥(λ) := F (λ)− F (0) and ∞+ is a formal symbol.

For two density functions F and F ′ we write F ¹ F ′ if there exist C > 0 and ε > 0
such that F (λ) ≤ F ′(Cλ) holds for all λ ∈ [0, ε]. We say that F and F ′ are dilatationally
equivalent (denoted by F ' F ′) if F ¹ F ′ and F ′ ¹ F and also we say that F and F ′

are dilatationally equivalent up to L2-Betti numbers if F⊥ ' F ′⊥.

It is clear that L2-Betti numbers of density functions are invariant under dilatational
equivalence and Novikov-Shubin invariants of density functions are invariant under di-
latational equivalence up to L2-Betti numbers ([6, Chapter 2]). If F and F ′ are two
Fredholm density functions which are dilatationally equivalent, then F and F ′ are cer-
tainly dilatationally equivalent up to L2-Betti numbers.

Here we will define secondary Novikov-Shubin invariants of density functions.

Definition 2.2. Let F be a Fredholm density function. Its secondary Novikov-
Shubin invariant of F is

β(F ) := lim inf
λ→0+

− ln
(− ln(F⊥(λ))

)

ln(λ)
,

provided that F (λ) > b(2)(F ) holds for all λ > 0 and otherwise, we put β(F ) := ∞+.

The above definition is well-defined under dilatational equivalence up to L2-Betti
numbers. Indeed we can confirm the following.

Lemma 2.3. Let F and F ′ be two Fredholm density functions. Then, F⊥ ¹ F ′⊥

implies β(F ) ≥ β(F ′).
In particular secondary Novikov-Shubin invariants of density functions are invariant

under dilatational equivalence up to L2-Betti numbers.

Proof. Since F⊥ ¹ F ′⊥, there exist C > 0 and ε > 0 such that F⊥(λ) ≤ F ′⊥(Cλ)
holds for all λ ∈ [0, ε]. Hence we have

ln
(− ln(F⊥(λ))

)

− ln(λ)
≥ ln

(− ln(F ′⊥(Cλ))
)

− ln(λ)
=

ln
(− ln(F ′⊥(Cλ))

)

− ln(Cλ)
· − ln(Cλ)
− ln(Cλ) + ln(C)

.

Thus we get

β(F ) ≥ β(F ′). ¤

Surely we can define other Novikov-Shubin type invariants which are invariant under
dilatational equivalence up to L2-Betti numbers, but we do not deal with them in this
paper.
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The following relationship between Novikov-Shubin invariants and secondary
Novikov-Shubin invariants is valid.

Lemma 2.4. Let F be a Fredholm density function. Then,

(i) α(F ) = ∞+ if and only if β(F ) = ∞+,
(ii) α(F ) < ∞ only if β(F ) = 0.

Proof. (i) is clear by definition. We prove (ii), that is, β(F ) > 0 and β(F ) 6= ∞+

only if α(F ) = ∞. Since

β(F ) = lim inf
λ→0+

ln
(− ln(F⊥(λ))

)

− ln(λ)
,

for any ε > 0 there exists λ0 ∈ (0, 1) such that

β(F )− ε ≤ inf
λ∈(0,λ0]

ln
(− ln(F⊥(λ))

)

− ln(λ)
.

Hence we have for all λ ∈ (0, λ0]

β(F )− ε ≤ ln
(− ln(F⊥(λ))

)

− ln(λ)
.

When we take

ε =
1
2
β(F ),

then we have for all λ ∈ (0, λ0]

1
2
β(F )(− ln(λ)) ≤ ln

(− ln(F⊥(λ))
)
.

Thus we have

exp
(

1
2β(F )(− ln(λ))

)

− ln(λ)
≤ − ln

(
F⊥(λ)

)

− ln(λ)
.

Since

exp
(

1
2β(F )(− ln(λ))

)

− ln(λ)
→∞ (λ → 0+),

we get

α(F ) = ∞. ¤
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The next example shows that any possible value can occur as the secondary Novikov-
Shubin invariant of a density function.

Example 2.5. Let us define density functions Fs for s ∈ [0,∞]t{∞+} by Fs(0) = 0
and for λ > 0 by

F0(λ) = λ,

Fs(λ) = exp
(
− 1

λs

)
,

F∞(λ) = exp
(
− exp

(
1
λ

))
,

F∞+(λ) = 0.

Then we can check for s ∈ [0,∞] t {∞+}

β(Fs) = s.

3. Secondary Novikov-Shubin invariants of groups.

In this section and the next, we will concentrate on secondary Novikov-Shubin in-
variants (see [6] for other L2-invariants).

Let G be a discrete group. The Hilbert space with orthonormal basis G is de-
noted by l2(G). Then we have the left and right regular representations of the group
ring CG on l2(G) by extending linearly the left and right regular representations of G.
The bounded operators on l2(G) which are equivariant with respect to the left regu-
lar representation of CG on l2(G) form a von Neumann algebra N (G) := B(l2(G))G,
called the group von Neumann algebra. Equivalently, N (G) can be defined as the weak
closure of the right regular representation of CG in B(l2(G)). The group von Neu-
mann algebra N (G) is equipped with its standard trace trN (G) : N (G) → C given by
trN (G)(T ) := 〈T (1G), 1G〉l2(G). The trace of an element in the right regular represen-
tation of CG is just the coefficient of the unit element. Moreover for an n-dimensional
square matrix T ∈ Mn(N (G)) = B(l2(G)n)G, we have

trN (G)

(
(Tij)1≤i,j≤n

)
:=

n∑

i=1

trN (G)(Tii).

The spectral density function up to the L2-Betti number of an operator T ∈
Mm,n(N (G)) = B(l2(G)n, l2(G)m)G is defined as F (T )⊥(λ) := trN (G) χ(0,λ2](T ∗T ) by
using spectral calculus. Here χ(0,λ2] is the characteristic function of the interval (0, λ2].
Also we can write F (T )⊥(λ) = trN (G) ET∗T

λ2 − trN (G) ET∗T
0 , where {ET∗T

µ }µ∈[0,∞) is the
spectral family of the positive operator T ∗T . Its secondary Novikov-Shubin invariant
β(T ) ∈ [0,∞] ∪∞+ is defined as β(F (T )⊥).

Definition 3.1. Let X be a free G-CW-complex of finite type. Define its cellular
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L2-chain complex by C
(2)
∗ (X) := l2(G) ⊗ZG C∗(X), where C∗(X) is the cellular chain

complex. Moreover denote the cellular p-th L2-boundary map by cp. When we fix a
cellular basis for Cp(X), we can regard C

(2)
p (X) as the Hilbert space l2(G)np with the

natural left action of CG and cp ∈ B(l2(G)np , l2(G)np−1)G, where np is the number of
the p-dimensional G-cells. We define its cellular p-th spectral density function up to
the L2-Betti number and its cellular p-th secondary Novikov-Shubin invariant of X as
follows:

F⊥p (X) := F⊥(cp)

βp(X) := β
(
F⊥p (X)

)
.

It is known that the dilatational equivalence class of F⊥p (X) is invariant under G-
homotopy equivalence ([6, Theorem 2.55(1)]). Hence so is βp(X).

Remark 3.2. In the case when X is a cocompact free proper G-manifold without
boundary and with G-Riemannian metric, we can define its analytic spectral density
function and its analytic secondary Novikov-Shubin invariant by using L2-de Rham com-
plex. In this paper we do not deal with the analytic spectral density functions. However
when we regard X as a free G-CW-complex of finite type, its cellular spectral density
function and its analytic one are dilatationally equivalent ([6, Theorem 2.68]) so that its
cellular secondary Novikov-Shubin invariant is the same as its analytic one.

We will deal with the case of groups.

Definition 3.3. Let n be a non-negative integer or n = ∞. Define Fn as the
class of groups for which BG are CW-complexes with a finite number of p-dimensional
cells for p ≤ n. Here BG are the classifying spaces of G.

We note that F1 is the class of finitely generated groups and that F∞ is the class
of finite type groups.

Definition 3.4. Let n be a non-negative integer or n = ∞ and G ∈ Fn. Then
for 1 ≤ p ≤ n we set

F⊥p (G) := F⊥p (EG),

βp(G) := βp(EG),

where EG is the universal covering of BG.

4. The first secondary Novikov-Shubin invariants of groups.

In this section we calculate the first secondary Novikov-Shubin invariants of finitely
generated groups by using the random walk on the Cayley graphs.

Let G be a finitely generated group with a finite set S of generators. The Cayley
graph CS(G) of (G,S) is the following connected one-dimensional free G-CW-complex.
Its 0-skeleton is G. For each element s ∈ S we attach a free equivalent G-cells G× [−1, 1]
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by the attaching map G × {−1, 1} → G which sends (g,−1) to g and (g, 1) to gs. We
will study the first secondary Novikov-Shubin invariant of CS(G). We can identify the
first L2-boundary map of CS(G)

cS : C
(2)
1 (CS(G)) → C

(2)
0 (CS(G))

with
⊕

s∈S

rs−1−1 :
⊕

s∈S

l2(G) → l2(G),

where r is the right regular representation of CG on l2(G).

Lemma 4.1. Let G be a finitely generated group and let X be a connected free
G-CW-complex of finite type. Then for any finite set S of generators of G, we have

β1(X) = β1(CS(G)).

In particular β1(CS(G)) is independent of the choice of a finite set S of generators
and we have

β1(G) = β1(CS(G)).

Proof. This is clear since it is known that F⊥1 (X) and F⊥1 (CS(G)) are dilata-
tionally equivalent ([6, Lemma 2.45, Theorem 2.55(1)]). ¤

We can assume that S is symmetric, that is, s ∈ S implies s−1 ∈ S and S does
not contain the unit element of G. We will recall simple random walk on CS(G). The
probability distribution is

p : G → [0, 1], g 7→
{|S|−1 if g ∈ S,

0 if g /∈ S.

Thus the transition probability operator is

P =
∑

s∈S

1
|S|rs−1 : l2(G) → l2(G),

in particular, we can confirm

P = id− 1
2|S|cSc∗S .

Then for n ∈ Z≥0

p(n) := trN (G) Pn
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is the probability of return after n steps for the random walk on the Cayley graph. It is
clear that p(n) for n ∈ 2Z≥0 is a non-increasing function.

In the following, we regard p(n) as a function defined only on the even numbers.

Definition 4.2. Let u, v be two positive non-increasing functions defined on the
positive real axis. We write u ¹ v if there exists C ≥ 1 such that for any t > 0

u(t) ≤ Cv(t/C).

We say that u and v are asymptotically equivalent (denoted by u ' v) if u ¹ v and v ¹ u,
and we call this equivalence class the asymptotic type. When a function is defined only
on the even numbers, we extend it to the positive real axis by linear interpolation. We
will use the same notation for the original function and its extension.

Remark 4.3. The asymptotic type of p(n) is invariant under quasi-isometry ([8,
Theorem 1.2]).

In particular the asymptotic type of p(n) is independent of the choice of a finite
symmetric set S of generators of G.

Here we will prove the main theorem.

Theorem 4.4. Let G be a finitely generated group and 0 < b < 1. Then,

(i) G is non-amenable or finite if and only if β1(G) = ∞+,
(ii) If G is infinite amenable and p(n) ¹ exp(−nb), then β1(G) ≥ 2b

1−b ,

(iii) If G is infinite amenable and p(n) � exp(−nb), then β1(G) ≤ 2b
1−b .

Proof. If G is finite, then obviously we have β1(G) = ∞+. Hence we can assume
that G is infinite. We have

F (λ) := trN (G)

(
χ[1−λ,1](P )

)
= F⊥1 (CS(G))

(√
2|S|λ)

.

Indeed, because trN (G) E
cSc∗S
0 = 0 for G infinite ([6, Theorem 1.35(8)]), we observe

F⊥1 (CS(G))
(√

2|S|λ)
= trN (G) E

c∗ScS

2|S|λ − trN (G) E
c∗ScS

0 = trN (G) E
cSc∗S
2|S|λ − trN (G) E

cSc∗S
0

= trN (G) E
1

2|S| cSc∗S
λ = trN (G)

(
χ[0,λ]

(
1

2|S|cSc∗S

))

= trN (G)

(
(χ[0,λ] ◦ f)(P )

)
= trN (G)

(
χ[1−λ,1](P )

)

with f(µ) := 1− µ. Then we get

β1(G) = 2β(F ).

(i) is clear since it is well known that the spectrum of P contains 1 if and only if G is
amenable ([5], [11]). We have for n ∈ 2Z>0
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(1− λ)n
(
χ[−1,−1+λ] + χ[1−λ,1]

)
(P ) ≤ Pn.

Hence we have

(1− λ)nF (λ) ≤ p(n). (1)

Also we have

Pn ≤ (1− λ)nχ(−1+λ,1−λ)(P ) +
(
χ[−1,−1+λ] + χ[1−λ,1]

)
(P ).

Here we need the following claim.

Claim 4.5. When −1 ∈ σ(P ), we have

trN (G)

(
χ[−1,−1+λ](P )

)
= trN (G)

(
χ[1−λ,1](P )

)
.

We will prove this after the proof of the theorem.
By Claim 4.5, when −1 ∈ σ(P ), we have for λ ∈ [0, 1]

p(n) ≤ (1− λ)n + 2F (λ).

When −1 /∈ σ(P ), we have for λ ∈ [0, 1 + inf σ(P ))

p(n) ≤ (1− λ)n + 2F (λ).

Hence if λ > 0 is sufficiently small, we have

p(n) ≤ (1− λ)n + 2F (λ). (2)

(ii) By (1) and p(n) ¹ exp(−nb), there exists C ∈ (0, 1] such that for any sufficiently
large even number n

F (λ) ≤ p(n)
(1− λ)n

(∀n ∈ 2Z>0

)

≤ C−1 exp(−Cnb)
(1− λ)n

.

Hence we have for any sufficiently large even number n

CF (λ) ≤ exp(−Cnb)
(1− λ)n

. (3)

For any ε ∈ (0, b), we put

nλ :=
[[(

1
λ

)1/(1−b+ε) ]]
,
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where [[v]] is the greatest even number not greater than v. Then we have

(
1
λ

)1/(1−b+ε)

− 2 < nλ ≤
(

1
λ

)1/(1−b+ε)

.

When λ > 0 is sufficiently small, then we have

1
21/b

(
1
λ

)1/(1−b+ε)

< nλ ≤
(

1
λ

)1/(1−b+ε)

. (4)

By (3) and (4), when λ > 0 is sufficiently small, then we observe

CF (λ) ≤ exp(−Cnb
λ)

(1− λ)nλ

< exp
(
− C

2

(
1
λ

)b/(1−b+ε) )
1

(1− λ)(
1
λ )1/(1−b+ε)

= exp
(
− C

2

(
1
λ

)b/(1−b+ε) )
1

{
(1− λ)

1
λ

}( 1
λ )(b−ε)/(1−b+ε)

≤ exp
(
− C

2

(
1
λ

)b/(1−b+ε) )
exp

(
2

(
1
λ

)(b−ε)/(1−b+ε) )

= exp
{(

−
(

1
λ

)b/(1−b+ε) )(
C

2
− 2

(
1
λ

)−ε/(1−b+ε) )}

≤ exp
{

C

4

(
−

(
1
λ

)b/(1−b+ε) )}
.

Hence we have

− ln(− lnCF (λ))
ln(λ)

≥ − ln
{

C
4

(
1
λ

)b/(1−b+ε)}

ln(λ)

=
b

1−b+ε ln
(

1
λ

)
+ ln

(
C
4

)

− ln(λ)

→ b

1− b + ε
(λ → 0+).

Thus we have for any ε ∈ (0, b)

β(F ) = β(CF ) ≥ b

1− b + ε
.

Hence we get
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β(F ) ≥ b

1− b
.

(iii) Since p(n) � exp(−nb), for any C ∈ (0, 1] and any N > 0 there exists n ≥ N(n ∈
2Z>0) such that

p(n) >
1
C

exp(−Cnb).

By fixing C ∈ (0, 1], we put ΛC :=
{
n ∈ 2Z>0|p(n) > 1

C exp(−Cnb)
}
. By (2), we have

for n ∈ ΛC and λ > 0 sufficiently small

2F (λ) ≥ p(n)− (1− λ)n >
1
C

exp(−Cnb)− (1− λ)n.

Hence we have

2F (λ) ≥ exp(−Cnb)− (1− λ)n. (5)

For any r > b
1−b we have

nλ :=
[[

1
λr/b

]]
+ 2.

Then we have for λ sufficiently small

1
λr/b

< nλ ≤ 1
λr/b

+ 2 ≤ 21/b

λr/b
. (6)

By (5) and (6), when λ > 0 is sufficiently small, then we observe

2F (λ) ≥ exp
(− Cnb

λ

)− (1− λ)nλ

> exp
(
− 2C

(
1
λ

)r )
− (1− λ)

1
λr/b

= exp
(
− 2C

(
1
λ

)r )
− {

(1− λ)
1
λ

} 1
λ(r−b)/b

≥ exp
(
− 2C

(
1
λ

)r )
− exp

(
−

(
1
λ

) r−b
b

)

= exp
(
− 2C

(
1
λ

)r )(
1− exp

{
2C

(
1
λ

)r

−
(

1
λ

)(r−b)/b })

= exp
(
− 2C

(
1
λ

)r )(
1− exp

[(
1
λ

)r {
2C −

(
1
λ

)r((1−b)/b)−1 }])

> 0.
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Hence we have

− ln(2F (λ)) ≤ 2C

(
1
λ

)r

− ln
(

1− exp
[(

1
λ

)r {
2C −

(
1
λ

)r((1−b)/b)−1 }])
. (7)

Let 1 > δ > 0. Then we have for λ > 0 sufficiently small

1− exp
[(

1
λ

)r {
2C −

(
1
λ

)r((1−b)/b)−1 }]
≥ 1− δ > 0.

Since we have

− ln
(

1− exp
[(

1
λ

)r {
2C −

(
1
λ

)r((1−b)/b)−1 }])
≤ − ln(1− δ) =: D

and (7), we get

− ln(2F (λ)) ≤ 2C

(
1
λ

)r

+ D.

Thus we observe

− ln(− ln(F (λ)))
ln(λ)

≤ ln
(
2C

(
1
λ

)r + D + ln(2)
)

− ln(λ)

→ r (λ → 0+).

Because β(F ) is defined by using “lim inf”, we have

β(F ) ≤ r.

Thus we get

β(F ) ≤ b

1− b
. ¤

Now Theorem 1.1 is clear.
Finally we will prove claim 4.5.

Lemma 4.6. Let G be a finitely generated group and S be a finite symmetric set
of generators of G where e /∈ S. If −1 ∈ σ(P ), then there exists a group homomorphism
f : G → S1 such that f(s) = −1 for any s ∈ S, where P := 1

|S|
∑

s∈S rs−1 .

Proof. Since −1 ∈ σ(P ), there exists (ξn)n∈N ⊂ l2(G) such that ‖ξn‖ = 1 and
‖Pξn + ξn‖ → 0(n →∞). Then we observe
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∣∣〈Pξn + ξn, ξn〉
∣∣ ≤ ‖Pξn + ξn‖‖ξn‖
→ 0 (n →∞).

Since we have

2|S|〈Pξn + ξn, ξn〉 = 2
∑

s∈S

〈rsξn + ξn, ξn〉

=
∑

s∈S

〈
(rs + rs−1 + 2)ξn, ξn

〉

and rs + rs−1 + 2 is a positive operator, we have

〈
(rs + rs−1 + 2)ξn, ξn

〉 → 0 (n →∞).

Because rs−1 is a unitary, we observe

〈
(rs + rs−1 + 2)ξn, ξn

〉
=

〈
(rs + 1)ξn, ξn

〉
+

〈
(rs−1 + 1)ξn, ξn

〉

=
〈
(rs + 1)ξn, ξn

〉
+

〈
ξn, (rs + 1)ξn

〉

= 2 Re
〈
(rs + 1)ξn, ξn

〉

= 2 Re
〈
(1 + rs−1)ξn, rs−1ξn

〉
.

Thus we observe for any s ∈ S

‖rsξn + ξn‖2 = Re ‖rsξn + ξn‖2

= Re
〈
(rs + 1)ξn, (rs + 1)ξn

〉

= Re
〈
(rs + 1)ξn, rsξn

〉
+ Re

〈
(rs + 1)ξn, ξn

〉

→ 0 (n →∞).

Here we define for any si1 , si2 , . . . , sim
∈ S

f
(
si1si2 · · · sim

)
:= lim

n→∞
〈
rsi1si2 ···sim

ξn, ξn

〉
.

This is well-defined since we have for any s ∈ S

lim
n→∞

〈rsξn, ξn〉 = −1

and for any si1 , si2 , . . . , sim+1 ∈ S
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∣∣〈rsi2 ···sim+1
ξn, ξn〉+ 〈rsi1si2 ···sim+1

ξn, ξn〉
∣∣

=
∣∣〈rsi2 ···sim+1

ξn, ξn〉+ 〈rsi1
rsi2 ···sim+1

ξn, ξn〉
∣∣

=
∣∣〈rsi2 ···sim+1

ξn, ξn〉+ 〈rsi2 ···sim+1
ξn, rs−1

i1
ξn〉

∣∣

=
∣∣〈rsi2 ···sim+1

ξn, (1 + rs−1
i1

)ξn〉
∣∣

≤ ‖rsi2 ···sim+1
ξn‖

∥∥(1 + rs−1
i1

)ξn

∥∥

→ 0 (n →∞). ¤

Proof of Claim 4.5. For any ξ =
∑

g∈G ξgg ∈ l2(G) we define

U(ξ) :=
∑

g∈G

f(g)ξgg.

This is a unitary on l2(G) and U(e) = e (e ∈ l2(G)). Moreover we have Urs = −rsU .
Indeed by Lemma 4.6 we have

Urs(ξ) =
∑

g∈G

f(gs−1)ξggs−1

=
∑

g∈G

f(g)f(s−1)ξggs−1

= −
∑

g∈G

f(g)ξggs−1

= −rsU(ξ).

Hence we have

UPU−1 = −P.

Since U is a unitary, we have

Uχ[−1,−1+λ](P )U−1 = UEP
λ U−1

= EUPU−1

λ

= χ[−1,−1+λ](UPU−1)

= χ[−1,−1+λ](−P )

= χ[1−λ,1](P ).

Thus we have
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trN (G)

(
χ[−1,−1+λ](P )

)
= 〈χ[−1,−1+λ](P )e, e〉
= 〈χ[−1,−1+λ](P )U−1e, U−1e〉
= 〈Uχ[−1,−1+λ](P )U−1e, e〉
= 〈χ[1−λ,1](P )e, e〉
= trN (G)(χ[1−λ,1](P )). ¤
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