Open Access
2008 On lie algebras of K-invariant functions
Ibrahima Toure, Kinvi Kangni
J. Math. Kyoto Univ. 48(4): 847-855 (2008). DOI: 10.1215/kjm/1250271320

Abstract

Let $G$ be a locally compact group and let $K$ be a compact subgroup of $Aut(G)$, the group of automorphisms of $G$. $(G,K)$ is a Gelfand pair if the algebra $L_{K}^{1}(G)$ of K-invariant integrable functions on $G$ is commutative under convolution. In this paper, we give some charactezations of this algebra in the nilpotent case, which generalize some results obtained by C. Benson, J. Jenkins, G. Ratcliff in [1] and obtain a new criterion for Gelfand pairs.

Citation

Download Citation

Ibrahima Toure. Kinvi Kangni. "On lie algebras of K-invariant functions." J. Math. Kyoto Univ. 48 (4) 847 - 855, 2008. https://doi.org/10.1215/kjm/1250271320

Information

Published: 2008
First available in Project Euclid: 14 August 2009

zbMATH: 1170.43002
MathSciNet: MR2513588
Digital Object Identifier: 10.1215/kjm/1250271320

Subjects:
Primary: 17B30 , 430A20

Rights: Copyright © 2008 Kyoto University

Vol.48 • No. 4 • 2008
Back to Top