Open Access
2006 On the annihilation of local cohomology modules
Javad Asadollahi, Shokrollah Salarian
J. Math. Kyoto Univ. 46(2): 357-365 (2006). DOI: 10.1215/kjm/1250281781

Abstract

Let $R$ be a (not necessary finite dimensional) commutative noetherian ring and let $C$ be a semi-dualizing module over $R$. There is a generalized Gorenstein dimension with respect to $C$, namely $\mathrm{G}_{C}$-dimension, sharing the nice properties of Auslander’s Gorenstein dimension. In this paper, we establish the Faltings’ Annihilator Theorem and it’s uniform version (in the sense of Raghavan) for local cohomology modules over the class of finitely generated $R$-modules of finite $\mathrm{G}_{C}$-dimension, provided $R$ is Cohen-Macaulay. Our version contains variations of results already known on the Annihilator Theorem.

Citation

Download Citation

Javad Asadollahi. Shokrollah Salarian. "On the annihilation of local cohomology modules." J. Math. Kyoto Univ. 46 (2) 357 - 365, 2006. https://doi.org/10.1215/kjm/1250281781

Information

Published: 2006
First available in Project Euclid: 14 August 2009

zbMATH: 1112.13018
MathSciNet: MR2284348
Digital Object Identifier: 10.1215/kjm/1250281781

Subjects:
Primary: 13D45
Secondary: 13D05 , 13H10

Rights: Copyright © 2006 Kyoto University

Vol.46 • No. 2 • 2006
Back to Top