Open Access
2001 The hyperbolic metric and spherically convex regions
Seong-A Kim, David Minda
J. Math. Kyoto Univ. 41(2): 285-302 (2001). DOI: 10.1215/kjm/1250517634

Abstract

There are a number of characterizations of convex subregions $\Omega$ of the complex plane $\mathbb{C}$ in terms of the density $\lambda_{\Omega}(w)$ of the hyperbolic metric $\lambda_{\Omega}(w)|dw|$ for $\Omega$. We derive analogous characterizations for spherically convex regions $\Omega$ on the Riemann sphere $\mathbb{P}$ in terms of the spherical density $\mu_{\Omega}(w) = (1+|w|^{2})\lambda_{\Omega}(w)$ of the hyperbolic metric. A proper subregion $\Omega$ of $\mathbb{P}$ is spherically convex if for all pairs $A$, $B$ of points in $\Omega$ the spherical geodesic (the shorter arc of the great circle) joining $A$ and $B$ lies in $\Omega$. As a limiting case of our results we obtain known characterizations of convex regions in $\mathbb{C}$.

Citation

Download Citation

Seong-A Kim. David Minda. "The hyperbolic metric and spherically convex regions." J. Math. Kyoto Univ. 41 (2) 285 - 302, 2001. https://doi.org/10.1215/kjm/1250517634

Information

Published: 2001
First available in Project Euclid: 17 August 2009

zbMATH: 1008.30027
MathSciNet: MR1852985
Digital Object Identifier: 10.1215/kjm/1250517634

Subjects:
Primary: 30F45

Rights: Copyright © 2001 Kyoto University

Vol.41 • No. 2 • 2001
Back to Top