Open Access
WINTER 2014 The compactness of a weakly singular integral operator on weighted Sobolev spaces
David Elliott
J. Integral Equations Applications 26(4): 483-496 (WINTER 2014). DOI: 10.1216/JIE-2014-26-4-483

Abstract

It is shown that the weakly singular integral operator~$\int_{-1}^{1}\big(\phi(\tau)/|\tau -t|^{\gamma}\big)\,d\tau$, where $0\lt \gamma\lt 1$, maps the weighted Sobolev space~$W_{p;\alpha,\beta}^{(n)}(\Omega)$ compactly into itself for $1\lt p\lt \infty$, $0\lt \alpha+1/q, \beta+1/q\lt 1$~and $n\in \mathbb{N}_0$.

Citation

Download Citation

David Elliott. "The compactness of a weakly singular integral operator on weighted Sobolev spaces." J. Integral Equations Applications 26 (4) 483 - 496, WINTER 2014. https://doi.org/10.1216/JIE-2014-26-4-483

Information

Published: WINTER 2014
First available in Project Euclid: 9 January 2015

zbMATH: 1323.46026
MathSciNet: MR3299828
Digital Object Identifier: 10.1216/JIE-2014-26-4-483

Subjects:
Primary: 46E35 , 47B37

Rights: Copyright © 2014 Rocky Mountain Mathematics Consortium

Vol.26 • No. 4 • WINTER 2014
Back to Top