Abstract
It is shown that the weakly singular integral operator~$\int_{-1}^{1}\big(\phi(\tau)/|\tau -t|^{\gamma}\big)\,d\tau$, where $0\lt \gamma\lt 1$, maps the weighted Sobolev space~$W_{p;\alpha,\beta}^{(n)}(\Omega)$ compactly into itself for $1\lt p\lt \infty$, $0\lt \alpha+1/q, \beta+1/q\lt 1$~and $n\in \mathbb{N}_0$.
Citation
David Elliott. "The compactness of a weakly singular integral operator on weighted Sobolev spaces." J. Integral Equations Applications 26 (4) 483 - 496, WINTER 2014. https://doi.org/10.1216/JIE-2014-26-4-483
Information