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THE COMPACTNESS OF A WEAKLY SINGULAR
INTEGRAL OPERATOR

ON WEIGHTED SOBOLEV SPACES

DAVID ELLIOTT

ABSTRACT. It is shown that the weakly singular inte-

gral operator
∫ 1
−1

(
ϕ(τ)/|τ − t|γ

)
dτ , where 0 < γ < 1, maps

the weighted Sobolev space W
(n)
p;α,β(Ω) compactly into itself

for 1 < p < ∞, 0 < α+ 1/q, β + 1/q < 1 and n ∈ N0.

1. Introduction. We shall start by defining the weighted Sobolev
spaces of the title. Let N0 denote the set of all non-negative integers, so
that N0 := {0, 1, 2, . . .} =: {0}∪N, and let Ω denote the interval (−1, 1).

Definition 1.1. For 1 ≤ p < ∞, real α and β, and n ∈ N0, we shall

denote by W
(n)
p;α,β(Ω) the space of all functions ϕ such that

(1) Ij(ϕ) :=

∫ 1

−1

(
(1− τ)j−α(1 + τ)j−β |ϕ(j)(τ)|

)p
dτ

is finite, for all j = 0(1)n. A norm on the space W
(n)
p;α,β(Ω) will be

denoted and defined by

(2) ∥ϕ∥p;α,β;n := max
j=0(1)n

I
1/p
j (ϕ).

As Kufner [2] has observed, weighted Sobolev spaces have appli-
cations in the theory of partial differential equations and in numeri-
cal methods for the solution of boundary-value problems. Elliott and
Okada [1] have considered the finite Hilbert transform in the context
of these spaces. In this paper we wish to consider the particular weakly
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singular operator which is denoted and defined by

(3) (Aϕ)(t) :=

∫ 1

−1

ϕ(τ) dτ

|τ − t|γ
, for t ∈ Ω and 0 < γ < 1,

and its compactness on particular weighted Sobolev spaces.

For 1 < p <∞, we define the conjugate number q by

(4)
1

p
+

1

q
= 1,

so that we always have 1 < q < ∞. In terms of this notation, Mikhlin
and Prössdorf [3] have given the following theorem.

Theorem 1.1. Suppose

(5) 1 < p <∞, 0 < α+ 1/q < 1 and 0 < β + 1/q < 1.

Then A is a compact operator on W
(0)
p;α,β(Ω) into itself.

Proof. See [3, Theorem 4.1, Chapter II]. �

We shall take this result as the starting point of our paper, and
we shall prove, in Theorem 3.3, that Theorem 1.1 can be generalized
to show that, under the conditions (5), A is a compact operator on

W
(n)
p;α,β(Ω) into itself, for all n ∈ N0.

Before embarking upon this, there are three immediate consequences
of the definition of weighted Sobolev spaces which are worth noting.
We shall let D denote the differentiation operator and, furthermore,
we shall define

(6) ρ(t) := 1− t2.

Lemma 1.1. If 1 ≤ p <∞, α and β are real, and n ∈ N0, then

(i) W
(n)
p;α,β(Ω) ⊂W

(n−1)
p;α,β (Ω) ⊂ · · · ⊂W

(0)
p;α,β(Ω);

(ii) ϕ ∈ W
(n)
p;α,β(Ω) if and only if ρjDjϕ ∈ W

(0)
p;α,β(Ω), for all

j = 0(1)n;

(iii) Under conditions (5), A is a compact operator on W
(n)
p;α,β(Ω)

into W
(0)
p;α,β(Ω) for all n ∈ N.
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Proof. Parts (i) and (ii) are immediate consequences of Defini-
tion 1.1. The proof of part (iii) is an immediate consequence of Theo-
rem 1.1 and part (i) of this lemma. �

We shall need Hölder’s inequalities for both integrals and sums. For
1 < p <∞, these are given by

(7)

∣∣∣∣ ∫ 1

−1

ϕ(τ)ψ(τ) dτ

∣∣∣∣ ≤ (∫ 1

−1

|ϕ(τ)|p dτ
)1/p(∫ 1

−1

|ψ(τ)|q dτ
)1/q

and

(8)

∣∣∣∣ n∑
k=0

akbk

∣∣∣∣ ≤ ( n∑
k=0

|ak|p
)1/p( n∑

k=0

|bk|q
)1/q

,

respectively, where q is defined in (4). We will also need Leibnitz’s
theorem for the nth derivative of a product of two functions, which is
given by

(9) Dn(ϕψ) =
n∑

k=0

(
n

k

)
(Dkϕ)(Dn−kψ),

for all n ∈ N. Finally, throughout the paper, we will let c denote a
generic constant whose value may change from line to line. We may
also write, for example, c ̸= c(a, b) in order to make the point that the
constant c is independent of a and b, whatever these might happen to
be.

In Section 2, under conditions (5) on p, α and β, we shall show the

compactness of the operator A on the space W
(1)
p;α,β(Ω) into itself and

then, in Section 3, we will generalize this result to show the compactness

of A on W
(n)
p;α,β(Ω) into itself for all n ∈ N0.

2. The compactness of A on the space W
(1)
p;α,β(Ω). We first need

the following result.

Theorem 2.1. Suppose that n ∈ N, 1 < p < ∞, 0 < α+ 1/q < 1 and

0 < β+1/q < 1. Then ϕ ∈W
(n)
p;α,β(Ω) if and only if ρjDjϕ ∈W

(0)
p;α,β(Ω)

for j = 1(1)n.
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Proof. If ϕ ∈W
(n)
p;α,β(Ω), then, from Lemma 1.1 part (ii), we certainly

have that ρjDjϕ ∈W
(0)
p;α,β(Ω) for j = 1(1)n.

Suppose now that ρjDjϕ ∈W
(0)
p;α,β(Ω) for j = 1(1)n. It then follows

immediately from (1) that Ij(ϕ) < ∞ for j = 1(1)n. However, it

remains to show that, if ρDϕ ∈ W
(0)
p;α,β(Ω), then ϕ ∈ W

(0)
p;α,β(Ω). We

are given that I1(ϕ) is finite, and we need to show that this implies the
finiteness of I0(ϕ). On defining

(10) I0,1(ϕ) :=

∫ 1

0

(
(1− τ)−α(1 + τ)−β |ϕ(τ)|

)p
dτ,

we have, for τ ∈ [0, 1),

ϕ(τ) = ϕ(0) +

∫ τ

0

ϕ′(ξ) dξ(11)

= ϕ(0) +

∫ τ

0

(1− ξ)δϕ′(ξ)× (1− ξ)−δ dξ,

where δ is chosen so that

(12) 1/q < δ < 1− α.

Recall from (5) that 1/q < 1 − α so that such a δ always exists. By
Hölder’s inequalities (7) and (8), it follows, from (11), that

(13) |ϕ(τ)|p

≤ c

{
|ϕ(0)|p +

(∫ τ

0

(1− ξ)pδ|ϕ′(ξ)|p dξ
)(∫ τ

0

(1− ξ)−qδ dξ

)p/q}
,

where c ̸= c(τ, ϕ). Since 1− qδ < 0, we have

(14)

(∫ τ

0

(1− ξ)−qδ dξ

)p/q

≤ c(1− τ)p−1−pδ,

where c ̸= c(τ). From (10), (13) and (14), we have

I0,1(ϕ) ≤ c

{
|ϕ(0)|p

∫ 1

0

(1− τ)−pα dτ

(15)

+

∫ 1

0

(1− τ)−pα−pδ+p−1

(∫ τ

0

(1− ξ)pδ|ϕ′(ξ)|p dξ
)
dτ

}
,
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where c ̸= c(ϕ). On interchanging the order of integration in the
iterated integral and observing, from (5), that −pα > −1, we obtain

(16) I0,1(ϕ) ≤ c

{
|ϕ(0)|p +

∫ 1

0

(
(1− ξ)1−α|ϕ′(ξ)|

)p
dξ

}
,

where c is independent of ϕ. Since we are assuming that ρϕ′ ∈
W

(0)
p;α,β(Ω), it follows that the integral in (16) exists so that I0,1(ϕ)

is finite. By a similar argument over the interval (−1, 0], the details of
which will not be given, it then follows that I0(ϕ) is finite, so that the
theorem is proved. �

In order to continue with the proof of the compactness of A on

W
(1)
p;α,β(Ω) into itself, we need some further results.

Lemma 2.1. Suppose ϕ ∈W
(1)
p;α,β(Ω) with 1 < p <∞, 0 < α+1/q < 1

and 0 < β + 1/q < 1. Then D(ρϕ) ∈W
(0)
1;0,0(Ω), together with

(17) (ρϕ)(−1) = (ρϕ)(+1) = 0.

Proof. Since |ρ′(t)| ≤ 2 and ρ(t) ≥ 0 for all t ∈ Ω, we have

∫ 1

−1

|D(ρϕ)(τ)| dτ ≤
∫ 1

−1

2|ϕ(τ)| dτ +
∫ 1

−1

ρ(τ)|ϕ′(τ)| dτ

(18)

=

∫ 1

−1

(
(1− τ)−α(1 + τ)−β

(
2|ϕ(τ)|+ ρ(τ)|ϕ′(τ)|

))
× (1− τ)α(1 + τ)β dτ.

Applying Hölder’s inequalities, see (7) and (8), to this integral we find,
since α+ 1/q > 0 and β + 1/q > 0, that

(19)

∫ 1

−1

|D(ρϕ)(τ)| dτ ≤ c∥ϕ∥p;α,β;1 <∞,

where c is independent of ϕ. Since
∫ 1

−1
|D(ρϕ)(τ)| dτ exists, we have

that D(ρϕ) is integrable on Ω, or that D(ρϕ) ∈W
(0)
1;0,0(Ω), as required.
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To show that limt→1 ρ(t)ϕ(t) = 0, we have for t ∈ [0, 1),

ϕ(t) = ϕ(0) +

∫ t

0

(1− τ)1−α(1 + τ)1−βϕ′(τ)(20)

× (1− τ)α−1(1 + τ)β−1 dτ.

By the triangle inequality and Hölder’s inequality (7) we have

(21) |ϕ(t)| ≤ |ϕ(0)|+∥ϕ∥p;α,β;1
(∫ t

0

(1− τ)q(α−1)(1+ τ)q(β−1) dτ

)1/q

.

Since t ∈ [0, 1) and q(1− α) > 1, we find that∫ t

0

(1− τ)q(α−1)(1 + τ)q(β−1) dτ < 2q(1−β)

∫ t

0

(1− τ)q(α−1) dτ(22)

=
c

(1− t)q(1−α)−1
,

where c = 2q(1−β)/(q(1 − α) − 1). Inequalities (21) and (22) together
give

(23) (1− t)|ϕ(t)| ≤ (1− t)|ϕ(0)|+ c∥ϕ∥p;α,β;1(1− t)α+1/q.

Since α + 1/q > 0, we see that limt→1(1 − t)|ϕ(t)| = 0. By arguing
similarly at the end point −1, we establish (17). �

We shall now give conditions under which the operators A and D
commute.

Theorem 2.2. Suppose ϕ ∈W
(1)
p;α,β(Ω) where

1 < p <∞, 0 < α+ 1/q < 1 and 0 < β + 1/q < 1.

Then, on Ω,

(24) DA(ρϕ) = AD(ρϕ).

Proof. Let us write ψ = ρϕ. From (3), we have

(25) DA(ρϕ) =
d

dt

{∫ t

−1

ψ(τ)

(t− τ)γ
dτ +

∫ 1

t

ψ(τ)

(τ − t)γ
dτ

}
.
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Now

(26)

∫ t

−1

ψ(τ)

(t− τ)γ
dτ = − 1

1− γ

∫ t

−1

ψ(τ) d
(
(t− τ)1−γ

)
.

On integrating by parts and recalling, from Lemma 2.1, that ψ(−1) = 0,
we find, since 1− γ > 0,

(27)

∫ t

−1

ψ(τ)

(t− τ)γ
dτ =

1

1− γ

∫ t

−1

(t− τ)1−γ(Dψ)(τ) dτ.

On differentiating with respect to t, see for example Olver et al. [4,
equation (1.5.22)], we have

(28)
d

dt

∫ t

−1

ψ(τ)

(t− τ)γ
dτ =

∫ t

−1

D(ρϕ)(τ)

(t− τ)γ
dτ.

Arguing similarly, we find that

(29)
d

dt

∫ 1

t

ψ(τ)

(τ − t)γ
dτ =

∫ 1

t

D(ρϕ)(τ)

(τ − t)γ
dτ.

From (28) and (29), we obtain (24), as required. �

At this point it is convenient to introduce two further linear opera-
tors.

Definition 2.1. For ϕ ∈W
(0)
p;α,β(Ω), we define, on Ω,

(30) Bϕ := A(ρϕ)− ρAϕ and Cϕ := A(ρ′ϕ)− ρ′Aϕ.

Theorem 2.3. For ϕ ∈ W
(1)
p;α,β(Ω) with 1 < p < ∞, 0 < α + 1/q < 1

and 0 < β + 1/q < 1 we have, for t ∈ Ω,

(31) DBϕ(t) = (2− γ)t(Aϕ)(t)− γA(tϕ)(t)

and

(32) Cϕ(t) = 2t(Aϕ)(t)− 2A(tϕ)(t),

so that the operators DB and C are compact operators on W
(1)
p;α,β(Ω)

into W
(0)
p;α,β(Ω).
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Proof. From (3), (6) and (30) we have, for t ∈ Ω,

DBϕ(t) =
d

dt

{∫ 1

−1

(t− τ)(t+ τ)

|τ − t|γ
ϕ(τ) dτ

}
=

d

dt

{∫ t

−1

(t− τ)1−γ(t+ τ)ϕ(τ) dτ(33)

−
∫ 1

t

(τ − t)1−γ(t+ τ)ϕ(τ) dτ

}
.

Since 1− γ > 0, we find on performing the differentiation that

(34)
DBϕ(t) = (1− γ)

∫ 1

−1

(t+ τ)

|τ − t|γ
ϕ(τ) dτ +

∫ 1

−1

(t− τ)

|τ − t|γ
ϕ(τ) dτ

= (1− γ)
(
t(Aϕ)(t) +A(tϕ)(t)

)
+ t(Aϕ)(t)−A(tϕ)(t),

from which (31) follows at once.

From (6) and (30), (32) follows immediately.

Since ϕ ∈ W
(1)
p;α,β(Ω), we have that both ϕ and tϕ are in W

(0)
p;α,β(Ω).

It then follows, from Theorem 1.1, that the operators DB and C

are compact on W
(1)
p;α,β(Ω) into W

(0)
p;α,β(Ω), each being the sum of two

compact operators. �

We need to define here one further operator which, together with its
generalization in Section 3, will be of considerable importance in this
analysis.

Definition 2.2. For ϕ ∈ W
(1)
p;α,β(Ω), we define, on Ω, the operator ∆1

by

(35) ∆1ϕ := A(ρDϕ)− ρDAϕ.

We are now in a position to relate the operator ∆1 to operators B,
C and D.

Theorem 2.4. Suppose ϕ ∈W
(1)
p;α,β(Ω) with

1 < p <∞, 0 < α+ 1/q < 1 and 0 < β + 1/q < 1.
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Then, on Ω,

(36) ∆1ϕ = DBϕ− Cϕ

so that ∆1 is a compact operator on W
(1)
p;α,β(Ω) into W

(0)
p;α,β(Ω).

Proof. From (30), we have, on Ω,

(37) DBϕ− Cϕ = DA(ρϕ)− ρDAϕ−A(ρ′ϕ).

From (24), it now follows at once that

(38) DBϕ− Cϕ = A(ρDϕ)− ρDAϕ = ∆1ϕ,

from (35), as claimed. Since, from Theorem 2.3 both DB and C are

compact operators onW
(1)
p;α,β(Ω) intoW

(0)
p;α,β(Ω), then so is ∆1, it being

the sum of these two compact operators. �

It now remains to show that the operator A is a compact operator

on W
(1)
p;α,β(Ω) into itself, under the usual conditions.

Theorem 2.5. Suppose

1 < p <∞, 0 < α+ 1/q < 1 and 0 < β + 1/q < 1.

Then A is a compact operator on W
(1)
p;α,β(Ω) into itself.

Proof. Suppose ϕ ∈ W
(1)
p;α,β(Ω). Then, from Lemma 1.1 (i), we also

have that ϕ ∈ W
(0)
p;α,β(Ω) so that, from Theorem 1.1, it follows that A

is a compact operator on W
(1)
p;α,β(Ω) into W

(0)
p;α,β(Ω).

Again, since from Lemma 1.1 (ii) we have that ρDϕ ∈ W
(0)
p;α,β(Ω) it

follows, from Theorem 1.1 again, that A(ρD) is a compact operator on

W
(1)
p;α,β(Ω) into W

(0)
p;α,β(Ω). Since, from (38), we have that ρD(Aϕ) =

A(ρDϕ)−∆1ϕ and since, in Theorem 2.4, we have shown that ∆1 is a

compact operator on W
(1)
p;α,β(Ω) into W

(0)
p;α,β(Ω), it follows that ρDA is

a compact operator on W
(1)
p;α,β(Ω) into W

(0)
p;α,β(Ω).

Given any sequence of functions {ϕm}m∈N, where ϕm ∈ W
(1)
p;α,β(Ω),

it follows that there exists a subsequence {ϕ1,m} say, such that the
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sequence {Aϕ1,m} converges to ψ0 and the sequence {ρDAϕ1,m} con-

verges to ψ1, where the functions ψ0 and ψ1 are in W
(0)
p;α,β(Ω). Conse-

quently, ρDψ0 = ψ1 so that, since ψ1 ∈ W
(0)
p;α,β(Ω), it follows from

Theorem 2.1 that ψ0 ∈ W
(1)
p;α,β(Ω). Since {ϕm} was any sequence

of functions in W
(1)
p;α,β(Ω) and since the sequence {Aϕ1,m} converges

to an element of W
(1)
p;α,β(Ω), we have that A is a compact operator

on W
(1)
p;α,β(Ω) into itself. �

3. The compactness of A onW
(n)
p;α,β(Ω) into itself for all n ∈ N0.

First, let us generalize Definition 2.2.

Definition 3.1. For all n ∈ N and ϕ ∈W
(n)
p;α,β(Ω), we define on Ω the

operator ∆n by

(39) ∆nϕ := A(ρnDnϕ)− ρnDnAϕ.

Theorem 3.1. Suppose n ∈ N with

1 < p <∞, 0 < α+ 1/q < 1 and 0 < β + 1/q < 1.

Assume that, for j = 1(1)n, ∆j is a compact operator on W
(j)
p;α,β(Ω)

into W
(0)
p;α,β(Ω). Then A is a compact operator on W

(n)
p;α,β(Ω) into itself.

Proof. We shall first show that, under the given conditions, A maps

the space W
(n)
p;α,β(Ω) into itself. Suppose ϕ ∈ W

(n)
p;α,β(Ω). Then since,

from Lemma 1.1 (ii), ρjDjϕ ∈W
(0)
p;α,β(Ω) for j = 1(1)n, it follows from

Theorem 1.1 that A(ρjDjϕ) is also in W
(0)
p;α,β(Ω), for j = 1(1)n. From

(39), we have that ρjDjAϕ = A(ρjDjϕ) − ∆jϕ, for j = 1(1)n. Since

we are assuming that ∆j mapsW
(j)
p;α,β(Ω) intoW

(0)
p;α,β(Ω) for j = 1(1)n,

it then follows that ρjDjA maps W
(j)
p;α,β(Ω) into W

(0)
p;α,β(Ω) for all

j = 1(1)n. As a consequence of Lemma 1.1 (ii) again, we have that

Aϕ ∈W
(n)
p;α,β(Ω) or, in other words, A maps W

(n)
p;α,β(Ω) into itself.

To show the compactness of A, we can argue as we have done
in the proof of Theorem 2.5. Let {ϕm}, m ∈ N, be any bounded

sequence of functions in W
(n)
p;α,β(Ω). Then we can ultimately find a
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subsequence of functions {ϕ1,m}, m ∈ N, such that, for each j = 1(1)n,
the sequence {ρjDj(Aϕ1,m)} converges to a function ψj , say, where

each ψj ∈ W
(0)
p;α,β . It then follows, from Theorem 2.1, that the limit

of the sequence {Aϕ1,m} is an element of W
(n)
p;α,β(Ω). That is, A is a

compact operator on W
(n)
p;α,β(Ω) into itself. �

On recalling Definition 2.1 for the operators B and C, we can now
prove the following important result.

Theorem 3.2. For all n ∈ N and ϕ ∈W
(n+1)
p;α,β (Ω), we have that

(40) ∆n+1ϕ = ∆n(ρDϕ)− nρ′∆nϕ+ n(n− 1)ρ∆n−1ϕ

+ ρnDn∆1ϕ− nC(ρnDnϕ) + n(n− 1)B(ρn−1Dn−1ϕ).

Proof. From equation (39), we have, for all n ∈ N,

(41) ∆n(ρDϕ) = A
(
ρnDn(ρDϕ)

)
− ρnDnA(ρDϕ).

Recalling, from (6), that ρ(t) = 1− t2, we have by Leibnitz’s theorem,
see (9), that

(42) Dn(ρDϕ) = ρDn+1ϕ+ nρ′Dnϕ− n(n− 1)Dn−1ϕ.

Since, from (35), A(ρDϕ) = ∆1ϕ + ρDAϕ, it follows, from (41) and
(42), that

(43) ∆n(ρDϕ) = A(ρn+1Dn+1ϕ)− ρnDn∆1ϕ− ρnDn(ρDAϕ)

+ nA(ρ′ρnDnϕ)− n(n− 1)A(ρ ρn−1Dn−1ϕ).

But again, from (9),
(44)
ρnDn(ρDAϕ) = ρn+1Dn+1Aϕ+ nρ′ρnDnAϕ− n(n− 1)ρnDn−1Aϕ.

On substituting (44) into (43) and recalling the definition of ∆n+1ϕ
from (39), we obtain

(45)

∆n+1ϕ = ∆n(ρDϕ) + ρnDn∆1ϕ+ n
(
ρ′ρnDnAϕ−A(ρ′ρnDnϕ)

)
+ n(n− 1)

(
A(ρ ρn−1Dn−1ϕ)− ρ.ρn−1Dn−1Aϕ

)
.
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From equations (30) and (39), this gives

(46) ∆n+1ϕ = ∆n(ρDϕ) + ρnDn∆1ϕ− nC(ρnDnϕ)− nρ′∆nϕ

+ n(n− 1)
(
B(ρn−1Dn−1ϕ) + ρ

(
A(ρn−1Dn−1ϕ)− ρn−1Dn−1Aϕ

))
.

On recalling the definition of ∆n−1ϕ from (39) we see that (40)
follows. �

We now come to the principal result of this paper.

Theorem 3.3. Suppose n ∈ N0 with

1 < p <∞, 0 < α+ 1/q < 1 and 0 < β + 1/q < 1.

Then A is a compact operator on W
(n)
p;α,β(Ω) into itself.

Proof. We shall prove this by mathematical induction. Recall that
the theorem is true when n = 0 (Theorem 1.1) and when n = 1 (The-
orem 2.5) so that we need to show that it is true for all n ≥ 2. In

Theorem 3.1, on assuming that for j = 1(1)n, ∆j mapped W
(j)
p;α,β(Ω)

compactly into W
(0)
p;α,β(Ω), it followed that A mapped W

(n)
p;α,β(Ω) com-

pactly into itself. The theorem will therefore follow if we can show that

∆n+1 mapsW
(n+1)
p;α,β (Ω) compactly intoW

(0)
p;α,β(Ω). Let us consider each

term of (40).

For ϕ ∈ W
(n+1)
p;α,β (Ω), we have, from Lemma 1.1 (i), that both ϕ and

ρDϕ are in W
(n)
p;α,β(Ω). Consequently, the operator

∆n(ρD)− nρ′∆n + n(n− 1)ρ∆n−1

maps W
(n+1)
p;α,β (Ω) compactly into W

(0)
p;α,β(Ω). For the terms in (40)

involving the operators B and C we have from Lemma 1.1 (ii) that

both ρn−1Dn−1ϕ and ρnDnϕ are inW
(0)
p;α,β(Ω). It then follows from (30)

and Theorem 1.1 that both B(ρn−1Dn−1) and C(ρnDn) are compact

operators on W
(n+1)
p;α,β (Ω) into W

(0)
p;α,β(Ω). It now remains to consider

the term ρnDn∆1ϕ.

From equations (6), (30), (31) and (36) it follows that

(47) ∆1ϕ = (2− γ)A(tϕ)− γtAϕ.
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Since we are assuming that A is a compact operator on W
(n)
p;α,β(Ω)

into itself it follows, from (47), that ∆1 is also a compact operator

on W
(n)
p;α,β(Ω) into itself. Consequently, from Lemma 1.1 (ii), we have

that ρnDn∆1 is a compact operator on W
(n)
p;α,β(Ω) into W

(0)
p;α,β(Ω) and,

therefore, by Lemma 1.1 (i), on W
(n+1)
p;α,β (Ω) into W

(0)
p;α,β(Ω).

Putting these results together we see, from (40), that ∆n+1 is a com-

pact operator onW
(n+1)
p;α,β (Ω) intoW

(0)
p;α,β(Ω) so that, from Theorem 3.1,

it follows that A is a compact operator on W
(n+1)
p;α,β (Ω) into itself. The

theorem now follows immediately by induction. �

4. Final remarks. Although we shall not prove it here, it turns out
that Theorem 1.1 is also true when p = 1, 0 < α < 1 and 0 < β < 1.
Under these same conditions, Theorem 3.3 is also true.

We have considered only one particular weakly singular operator.
Another important one is L where, for t ∈ Ω, we define

(48) Lϕ(t) :=

∫ 1

−1

log |τ − t|ϕ(τ) dτ.

From Mikhlin and Prössdorf [3] it follows that Theorem 1.1 is also true
for the operator L. By doing an analysis similar to that in Sections 2
and 3, it can be shown that Theorem 3.3 is also true for the operator L,
but we shall not give the details here.
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