Open Access
2015 On MKdV Equations Related to the Affine Kac-Moody Algebra $A_{5}^{(2)}$
Vladimir S. Gerdjikov, Dimitar M. Mladenov, Aleksander A. Stefanov, Stanislav K. Varbev
J. Geom. Symmetry Phys. 39: 17-31 (2015). DOI: 10.7546/jgsp-39-2015-17-31


We have derived a new system of mKdV-type equations which can be related to the affine Lie algebra $A^{(2)}_{5}$. This system of partial differential equations is integrable via the inverse scattering method. It admits a Hamiltonian formulation and the corresponding Hamiltonian is also given. The Riemann-Hilbert problem for the Lax operator is formulated and its spectral properties are discussed.


Download Citation

Vladimir S. Gerdjikov. Dimitar M. Mladenov. Aleksander A. Stefanov. Stanislav K. Varbev. "On MKdV Equations Related to the Affine Kac-Moody Algebra $A_{5}^{(2)}$." J. Geom. Symmetry Phys. 39 17 - 31, 2015.


Published: 2015
First available in Project Euclid: 27 May 2017

zbMATH: 1343.35208
MathSciNet: MR3444883
Digital Object Identifier: 10.7546/jgsp-39-2015-17-31

Rights: Copyright © 2015 Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences

Back to Top