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Abstract. We have derived a new system of mKdV-type equations which can be
related to the affine Lie algebra Ag). This system of partial differential equations
is integrable via the inverse scattering method. It admits a Hamiltonian formulation
and the corresponding Hamiltonian is also given. The Riemann-Hilbert problem for
the Lax operator is formulated and its spectral properties are discussed.
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1. Introduction

The general theory of the nonlinear evolution equations (NLEE) allowing Lax rep-
resentation is well developed [1,3,6,9,10,21]. In this paper our aim is to derive
a set of modified Korteveg—de Vries (mKdV) equations related to three affine Lie
algebras using the procedure introduced by Mikhailov [20]. This means that the
equations can be written as the commutativity condition of two ordinary differen-
tial operators of the type

Ly Eiaj +U(z,t,\)p =0

Ox

My = i%f + V(z,t,\)p = ¢yT'(N)

ey

where U(x,t,\), V(x,t,\) and I'(\) are some polynomials of A to be defined
below. We request also that the Lax pair (1) possesses appropriate reduction group
[20], for example if the reduction group is Zj, (h is a positive number) the reduction
condition is

C(U(a:,t, )\)) =U(z,t,w)), C’(V(a:,t, )\)) = V(z, t,w)). 2)
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This work can be considered as a continuation of our recent publications [11-13].
Below we consider the three cases separately. The underlying Kac-Moody algebras
are Bél), Af), Aéz) and the groups of reductions are correspondingly Zg4, Zs X Zs,
Zs X Zo. For the first two cases the Hamiltonians are well known [5]. A key
motivation for choosing this particular algebras is that the derived equations will

have very simple and elegant form.

Section 2 contains a derivation of the mKdV equations related to Bél). We start
with the Lax representation which is a subject to Z4-reduction group [20], find
the equations and derive the corresponding Hamiltonians. Then using the Lax
representation which is a subject to Zs x Zy-reduction group [20] we derive the

system of mKdV equations related to AEE) and finally derive the corresponding

Hamiltonians. In the next Section 3 we make the same procedure but this time

the algebra is A?). Section 4 is devoted to the spectral properties of Lax operator

for each algebra. Finally we relate this to the famous Riemann-Hilbert problem
(RHP). We finish with some discussion and conclusion.

2. Preliminaries

2.1. Equations Related to Bél)

We assume that the reader is familiar with the theory of semisimple Lie algebras

[18] and affine Lie algebras [4]. The rank of Bél) is 2, its Coxeter number is h = 4

and its exponents are 1, 3. Thus the Coxeter automorphism (see [11]) introduces a

grading in Bél) as follows

3
B = & g®. 3)
k=0

The grading condition holds
g, g c gtV @)

where k + [ is taken modulo four.

A convenient basis compatible with the grading of BS) algebra is [11]

9 = span{&{}, &5}, oM = span{&f, &5, &1}

%)
o = span{€f, €5} g® = span{&, &5, &

where we use

gij; = Eij F S1E£Sf1 = LijF (_1)i+jE6—j,6—z‘~ (6)
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In this Section Fj; is a 5 x 5 matrix equal to (Ejj)pnp = 0indjp and
S1=FEi5—Eu+E33—Ep+FEs,  ST=1 (7

provides the action of the external automorphism of A4 ~ sl(5) related to the
symmetry of its Dynkin diagram [18]. Obviously all QS ; belong to the subalgebra
By ~ s0(5) of Ay.

For deriving the equations we start with a Lax pair of the form (for details see [11])

L =10, + Q(x,t) — A\J

=10 + VO (2, t) + AW (2, 8) + X2V (2, 1) — NPK ®
with
Q(z,t) = (u1 r, )EN —ua(2, 1)), J=EL 4 Ex+ EN
VO (1) = § >51+1 +oie3; ©)
VO (z,t) = o{VEf + vl ef + uilef
VO (z,t) = o 51+3+v§ &, K = 25(65, + 265, + &),

We require that [L, M| = 0 for any . The condition [L, M| = 0 leads to a set of
recurrent relations (see [1, 8, 16]) which allow us to determine v (k) (z,t) in terms
of the potential Q(x,t) and its z-derivatives.

After the transformation x — 2x and ¢t — 4t’ the equations become

6u1 8 3 2 82U1 81@
— =4—( - 3 —4—— + 6u1—=—
ot~ “ox ( v S = A o, w0
Oua 0 0%u Ouq
— =4 3 2—— —6u1— |.
ot ax< u + Bujus + 275 ulax>
They can be written as Hamiltonian equations of motion
; H
% - 99 (1)
ot  0x dq;

with the Hamiltonian

00 44 .99 duy \ 2 dus ) o (Oug
H— _ood:n u]+us—b6ujus—38 % +4 % —12u7y % 12)

which coincides with the one in [5].
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2.2. Equations Related to Af)

Similarly we treat the AEE) case. The rank of this algebra is two, its Coxeter number

is h = 10 and its exponents are 1,3,7,9. Now the Coxeter automorphism is of

(2)
4

order 10 and introduces a grading in A, as follows

I
®
@/\

=

AP (13)

The grading condition holds
[, a0] c g®+D (14)

where now k + [ is taken mod10, [4, 5], see also [11].

(1)
2

A convenient basis compatible with the grading of B, ’ algebra is [11]

0 = span{&;, £5}, o) = span{€;;, &5, €}
g? = span{&;5, €}, g® = span{&y, £3;, 15}
9(4) = span{é‘f@), Ejl}, 9(5) = span{€y; — £y, — E33} (15)
g% = span{&,, €} g = span{&1y, £33, €51}
g® = span{&, €5}, g = span{&yy, &5, €y}
where we have used the basis (6) generated by the same matrix Sp (7).

The relevant Lax pair is of the form (for details see [11])

L=i0, + Qz,t) — \J

16
M =id + VO (z,t) + WD (2, 1) + N2V (2, 1) — XK (16)

z,t) = iug(z, 1) — iy (2, 1)ES5, J=EL+E5+Ep
v (© T, t) = vgo)é’frl + U§0)52+2
= ofVen + vy €5 + iV e

x,t) = vVeh + oD e, K =20(E5; — 2855 + &17).-

a7

We continue analogously. The condition [L, M] = 0 leads to a set of recurrent
relations (see [1, 8, 16]) which allow us to determine V (*)(z,t) in terms of the
potential Q(x,t) and its z-derivatives.
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After the transformation x +— 2z the equations are

ouq 0 62UQ 82u1 Ouy 2 3
— 9 <3 92 + 972 + (3ug + 6uq) B + 3uju; — 2uy "

ot ox
Ouo 5 0 <482u2 0%uy Juy

1
W + 3@ — (6’LL1 + 3’LL2) B + BU%UQ — 2u§’>

ot o

The Hamiltonian formulation follows from (11) and we find for H [5]
© 8uQ 2 8’LL1 2
/oo T (ul + uy — 3ujusy + o7 + Ey
ou ou ou ou
2 (ML) a2 [ F82 el gv2
wid () o (52) +o (%) (50))

3. Derivation of the Equations Related to Af)

19)

Now we consider the twisted affine Kac-Moody algebra Aé2) case. Its rank is three,

the Coxeter number is h = 10 and its exponents are 1,3,5,7,9, see [4,5]. Then
the Coxeter automorphism is given by

C(X) = CV(X)Cyt (20)

where V' is the external automorphism of the algebra A; ~ s[(6) generated by
the symmetry of its Dynkin diagram and C' is an element of the Cartan subgroup
defined below. More precisely

V(X) = _SQXTSQ_1, Sy = E176 — E2’5 + E3’4 — E473 + E572 — E6’1. 21

Note that in this Section the matrices E}; are 6 x 6 matrices equal to (Ej, j)np =
Okn0jp, besides 522 = —1.

In analogy with the previous Section we introduce

&5 =Eij ¥ SE[S; = Eij 7 (-1 Er_ 7 (22)

which obviously satisfy

+y _ ot
ViED =€,

YR

V(E;) =—¢&;. (23)

It is easy to check that Sjjf provide a basis for the subalgebra sp(6) of AéQ). The
Cartan subgroup element C} is defined by

Cy = diag (1, w, w?, w3, w 1). (24)
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The basis is as follows

0¥ = span{&y, €5, 65}, oY) = span{€&]), &5, €5, €5
9(2) = Span{g;i75415781_4}a 9(3) = span{gﬂ,gég,gﬁ,g;l}
g = span{€, €5, ), 0% = span{E&f, €1, € — E11, Exz — Exp}
g(G) = span{é’fg,c‘:{l,gga}, 9(7) = span{Eﬂ,Sgg,E;l,E&} (25)
g® = span{&k, &1, En by g = span{&, Exh, Eary Ea1 )
The grading condition is like always
where k + [ is taken modulo 10.
We take a Lax pair of the form
L =10, + Q(z,t) — \J
27
M =id + VO (z,t) + AW (2, 1) + N2V (2, 1) — XK @7
where
Qz,t) g, VW@ neg®, Keg® — TegV @8
This means
5 1 1
Qz,t) =1 gj(z, ), J:€2ﬁ+855+§8§+§5;5
j=1
- (0)
(0) _ +
VO (x,t) = Z:lvj & (29)
]:
1 1 1 a I 1.
VO (@,1) = o1& + 0y e + Jos el + S0l
1
1748 (x,t) = —vgg)é’gﬁ — ’U§2)&E — 505(32)81_4, K =bJ3.
The condition [L, M] = 0 leads to a set of recurrent relations (see [1, 8, 16])

which allow us to determine V(%) (z,t) in terms of the potential Q(x,t) and its

z-derivatives. For V() (z, t) we find, skipping the details, the result

(2) _ (2) _

o = —ib(qr + 2+ as), o) = —ibge, ol = —ib(gr — g2 — q3).
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For V) (z,t) we find

0
vi! =20 <CJ1C]2 - ;;) +f

1 0
U§)=b<Q§—Q%+Q1Q2+qw3+(Q3+Q2—Q1)>+f

Ox (30)

0
(1) b(Q%‘QS—Q%-l-QNJz—I-&7;(%—1-2612—611)) +f
vfll):f

where f(z,t) is some arbitrary function. Using a well known technique from the
theory of recursion operators [1,9, 16] we find from the equations for 1740 (z,t)
also f(x,t)

b 0
f=z (2q% +2¢7 — 3¢5 —5q1q2 + = (5q1 — g2 — 3q3)> @31)

ox
and
ib 0%q 0
ol = g (— 57 55 (342 43) — 24} + 3q1(q5 + q§))
0? dqs 0 0
v = 2 (2 (4gs + 3gs) + 302 A2 — 91 T 4 695 72 — 263 + 342 (¢ + ¢3)
0x2 ox Ox Ox
0 ib 0 8 3Q1 3(12
U:(», ) = 5 (axg(q?) +3q2) — 6g3—— O —3q1—— 9 —3¢2—— E —2¢5 +3g3(qf +¢3) ).

And finally, the A-independent terms in the Lax representation provide the equa-
tions

91 0 (_ > q

o
+3¢1-—(3¢2 + q3) — 26} + 3q1 (a5 + q§>

Yot T ox\ 022 o
dq o (0 dq3 dq1 dqs3

0‘872 = 6)(8(4@ +3q3) + 3¢ —— B —9q1 — o L4 63 o — 245 + 3q2(q7 +q3)>
dgs 0 (0 9¢ dq 9q

aaitd = 8— (a(qS + 3QQ) — Gani — 3(]1871 - 3(12672 - 2QB + 3%(‘11 + q2)

wherea:a
We find for the corresponding Hamiltonian (11)
3 2 2
_ 1= 1 Oa1\" _,(9a2\" _1 (0
ne ez sy 5 () 2 (3) 5 (%)
i<j

002 (9 o 50, 304 o _ g (922 (91
+ax(2‘h 35 ) + 5, @) -3 {5 )5 )

(32)
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4. On the Spectral Properties of the Lax Operators

4.1. General Theory

Here we will outline the general approach of constructing the fundamental analytic
solutions (FAS) of the Lax operators L with deep reductions [2,7,14-16]. Next we
will detail these results for the three different Lax operators considered above.

Our first remark is about the fact, that after a simple similarity transformation,
which diagonalizes the relevant matrix J, each of the above Lax operators will
take the form

-~ .0x
L=1-%
181:

where J is a diagonal matrix with complex eigenvalues.

+(Qz,t) = A)X(z,t,A) =0 (33)

The main ingredient needed for solving the direct and the inverse scattering prob-
lem of L are the Jost solutions.

It is well known that the Lax operators of the form (33) with generic complex-
valued J allow Jost solutions only for potentials on compact support [2]. An im-
portant theorem proved by Beals and Coifman [2] states that any smooth potential

Q(z,t) can be approximated with an arbitrary precision by a potential on finite
support. Then one can introduce the Jost solutions by

lim ¢_(z,t,\)e/ M =1, lim ¢ (z,t,\)e/* = 1. (34)
T——00 T—r00
Then the scattering matrix is introduced by
T()‘vt) = QZBJr(xvt? )\)ng(fﬁ,t,)\) (35)

where by “hat” we denote matrix inverse.

The next step of [2] was to prove that one can construct piece-wise FAS x, (x, t, \)
which allows analytic extension in a certain sector {2, in the complex A-plane.
These results were generalized to any simple Lie algebra in [7, 14]. The result
is that sector €2,, has as boundaries the rays starting from the origin /,,_1 and [,,
see the Figures below. The rays [, are determined by the solution of the linear
equations

SAa(J) = 0. (36)

In what follows we will outline the construction of FAS for the operator £ which
is defined by

£= % + Q(, )E(w, t,A) = ALJ, &(x, £, \)] = 0. @37
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Obviously the fundamental solutions of L and £ are related by
Ex(mt, A) = (a8, A)eM?, (38)
The Jost solutions &4 (z, ¢, A) must satisfy Volterra type integral equations
Ex(a,t,N) =1 +i / dy e TEQ(y, e (y, £, )Y
e (39)

£ (z,t,\) =1 —i—i/ dy e*i/\j(f”*y)Q(y,t)g_(y,t, )\)ei)\j(xfy).

oo

Let us now formulate the basic properties of &, (x,t, \) — the FAS of £:

1. The continuous spectrum of £ fills up the rays /,,.

2. Due to the Zj; symmetry the rays [, close angles equal to 7w/2h or w/h

depending on the choice of the algebra.

. To each ray [, we associate a subset of roots d,, of g which satisfy the con-
dition (36). Thus to each ray [,, we associate a subalgebra g, C g generated
by Fo, E_, H, for a € d,,.

. In each of the sectors {2, we can calculate the limits for z — +oco along the
lines [,,, more specifically

lim e MTE (x, 1, NN = SF (), Nel et
lim e M (x,, \)eNT =T (¢, \) D (N) @0
and
i E@me*iwgy(x,t, e =8 (t,N), Nely, e
lim e (a8, )N = TR (£ Dy (M) @

where S, T and D are given by

SEO) = exp (Y sEADE),  DEN) =exp (Y di Ha)

a€5u OéE(Sz/

TEO) = exp (Y tra(\ D Eia).

016511

(42)

Obviously they take values in the subgroup G, whose Lie algebra g, has as
positive roots the subset of roots related to /,,, see the Table 1.
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5. The time-dependence of S, T:f and D" is determined by the M operator
as

+ +
i%—)\?’[K,SﬂE()\,t)] =0, 9Dy _
ot ot
it (43)
e — N[K, TE(\ )] =0

where K determines the leading term of the M -operator.

6. The asymptotics S, 75" and D and ST, T;" and D can be considered as
independent. All the others are obtained from them by the Zj; symmetry
S5 (V) = CU(Sy ("), S50 (N) = C7(ST (")
TE(\) = CY(Ty (W), T (\) = CY(TF (Mw”) (44)
D3, (\) = C"(Dy (W), Dayiq (M) = C¥(DF (Aw”).

As a consequence of the above properties we prove the following lemma, which
generalizes the results of Zakharov and Shabat [22] for this type of algebras.

Lemma 1. 1. The FAS &, (z,t,\) of £ are solutions of the RHP
Eor1(z,t, \) =& (2,6, NGy (2, ), Gy(x,\) = e*i)‘JISV_HSIHei’\Jx
which allows canonical normalization

lim &, (x,t,\) = 1. (45)
A—00

2. The corresponding potential Q(z,t) is reconstructed from Eu(x,t, \) by

Qe ) = Tim A (T = & (2,6, )Ty (,1, 1)) (46)
A—00
where &, (x,t, \) is the unique regular solution of the RHP (1), [7,15,21].

Proof: 1) follows easily from equations (40), (41) and from the fact, that the FAS
is determined uniquely by its asymptotic for z — £oo.

2) follows from the fact that &, (x,t, \) is a fundamental solution of £. Multi-
ply equation (37) by &,(z,t, \) on the right, take the limit A\ — oo and use the
canonical normalization (45).

We will formulate the specific properties for the three algebras independently.
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Q3 Q

Qy Q

l ly

Figure 1. The continuous spectrum and the analyticity sectors of the FAS
for the Lax operators: the case of Bél) — left panel; the case of Af) — right

panel.
Table 1. Subsets of positive roots related to the lines [, Ul, 14, v =0,...,3
for the algebra Bél).
loUly | hWUls | 1oUlg | I3Uly
el el — es €2 el + e
4.2. B

Here h = 4 and J = /2diag(1,i,0,—i,—1). The rays [, are defined by I,,:
arg A = vm/4, thus they close angles 7/4. The sectors 2, v = 0,...,7 are
shown on Figure 1, left panel. The set of roots J, related to each [, are given in
Table 1.

43,49

Similarly for Af) we have h = 10 and J = diag (w,w?, —1,w™ 3wt withw =
exp(27i/10). The rays [, are defined by [,,: arg A = (2v 4+ 1)7/10,v = 0,...,9,
thus they close angles 7/5. The sectors 2, v = 0, ..., 9 are shown in Fig. 1, right
panel. The set of roots J,, related to each [, are given in Table 2.

Table 2. Subsets of positive roots related to the lines [, Ul, .5 v =0,...,4
for the algebra Af).
loUls lhUlg lbUly l3Ulg lyUlg

€1 —€2,63 —€5|€3 —€5,63 —€4|€] —€5,60 —€4|€] —€4,60 —€3|€] —€3,64 — €5
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Figure 2. The continuous spectrum and the analyticity sectors of the FAS for

the Lax operators for the case of AéQ).

Table 3. Subsets of positive roots related to the lines [, Ul, 419, =0,...,9
for the algebra A?).
loUl1g 1 Ulq1 la Ulio I3 Ul3 l4 Ulq4
€1 — €6 €1 —€3,64 — €5 €3 — €6 €1 —€2,63 — €5 €5 — €6
Is Ulis le Ulig 7 Uly7 ls Ulis lg Ulig
€2 — €5,63 — €4 €2 — €6 €1 —€5,62 — €4 €4 — €6 €1 — €4,62 — €3

4.4. A%

For Ag) we also have h = 10 but now J = diag (w,w?, —1,w™3 w™t) withw =
exp(27i/10). The rays [, now are defined by [, : arg A\ = v7/10,v = 0,...,19,
thus they close angles 7/10. The sectors €2, v = 0,...,19 are shown on Fig. 2.
The set of roots ¢, related to each [, are given in Table 3.

We end this Section by the following lemma

Lemma 2. Each of the subalgebras g, related to the ray l,, is a direct sum of s1(2)
subalgebras.

Proof: Let us prove our lemma for the algebra Aé2). First we consider the sub-
algebras go and g; related to the rays /g and /;. From Table 3 we find that the
algebra g is generated by E,, E_, and H,, where « takes the values e; — ey,
ez — ez and e5; — eg. These three roots are mutually orthogonal, which means that
go = sl(2) @ sl(2) @ sl(2). Similarly, the algebra g; is generated by E3, E_g
and Hpg, where 3 takes the values e; — e3 and e4 — eg, which are orthogonal to
each other. Therefore g; = s[(2) @ sl(2). Next we use the Z, ;1 symmetry, which
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in particular means that the set of the roots ¢, related to the ray /,, by the Coxeter
transformation C' as follows

b2, = C”(d0), d2p+1 = C(61). 47)

It remains to use the fact that the Coxeter transformation is an orthogonal transfor-
mation of the space of roots, so it obviously preserves the angles between any two
1oots.

The other cases are proved analogously. |

5. Discussion and Conclusion

We have derived several systems of equations which are related to the affine Kac-
(

Moody algebras BQI), Aff) and Ag) respectively. They admit a Lax representation
and can be solved using Inverse scattering method. We also outlined the spectral
properties of their Lax operators and formulated the corresponding RHP. This can
be used to derive their soliton solutions via the dressing Zakharov-Shabat method.
Lemma 2 can be used to prove the complete integrability of these mKdV equa-
tions. One can also develop the spectral theory of the relevant recursion operators
following the ideas of [7, 16, 17, 19] which can be used as a ground for uniform

deriving of all fundamental properties of the NLEE.
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