Open Access
2014 Modules Over Color Hom-Poisson Algebras
Ibrahima Bakayoko
Author Affiliations +
J. Gen. Lie Theory Appl. 8(1): 1-6 (2014). DOI: 10.4172/1736-4337.1000212


In this paper we introduce color Hom-Poisson algebras and show that every color Hom-associative algebra has a non-commutative Hom-Poisson algebra structure in which the Hom-Poisson bracket is the commutator bracket. Then we show that color Poisson algebras (respectively morphism of color Poisson algebras) turn to color Hom-Poisson algebras (respectively morphism of Color Hom-Poisson algebras) by twisting the color Poisson structure. Next we prove that modules over color Hom–associative algebras A extend to modules over the color Hom-Lie algebras L(A), where L(A) is the color Hom-Lie algebra associated to the color Hom-associative algebra A. Moreover, by twisting a color Hom-Poisson module structure map by a color Hom-Poisson algebra endomorphism, we get another one.


Download Citation

Ibrahima Bakayoko. "Modules Over Color Hom-Poisson Algebras." J. Gen. Lie Theory Appl. 8 (1) 1 - 6, 2014.


Published: 2014
First available in Project Euclid: 23 July 2015

zbMATH: 1332.17026
MathSciNet: MR3620395
Digital Object Identifier: 10.4172/1736-4337.1000212

Keywords: Color hom-associative algebras , Color hom-Lie algebras , formal deformation , Hom-modules , Homomorphism , Modules over color Hom-Lie algebras , Modules over color Hom-Poisson algebras

Rights: Copyright © 2014 Ashdin Publishing (2009-2013) / OMICS International (2014-2016)

Vol.8 • No. 1 • 2014
Back to Top