Open Access
Translator Disclaimer
2010 Double cross biproduct and bi-cycle bicrossproduct Lie bialgebras
Tao Zhang
J. Gen. Lie Theory Appl. 4: 1-16 (2010). DOI: 10.4303/jglta/S090602

Abstract

We construct double cross biproduct and bi-cycle bicrossproduct Lie bialgebras from braided Lie bialgebras. The main results generalize Majid's matched pair of Lie algebras and Drinfeld's quantum double and Masuoka's cross product Lie bialgebras.

Citation

Download Citation

Tao Zhang. "Double cross biproduct and bi-cycle bicrossproduct Lie bialgebras." J. Gen. Lie Theory Appl. 4 1 - 16, 2010. https://doi.org/10.4303/jglta/S090602

Information

Published: 2010
First available in Project Euclid: 6 August 2010

zbMATH: 1203.17011
MathSciNet: MR2645323
Digital Object Identifier: 10.4303/jglta/S090602

Subjects:
Primary: 17B62
Secondary: 18D35

Keywords: category theory , Lie algebras , Lie bialgebras , Lie coalgebras , Lie superalgebras , Nonassociative algebras , Nonassociative rings

Rights: Copyright © 2010 Ashdin Publishing (2009-2013) / OMICS International (2014-2016)

JOURNAL ARTICLE
16 PAGES


SHARE
Back to Top