Translator Disclaimer
2017 Hensel's lemma and the intermediate value theorem over a non-Archimedean field
Luigi Corgnier, Carla Massaza, Paolo Valabrega
J. Commut. Algebra 9(2): 185-211 (2017). DOI: 10.1216/JCA-2017-9-2-185

Abstract

This paper proves that all power series over a maximal ordered Cauchy complete non-Archimedean field satisfy the intermediate value theorem on every closed interval. Hensel's lemma for restricted power series is the main tool of the proof.

Citation

Download Citation

Luigi Corgnier. Carla Massaza. Paolo Valabrega. "Hensel's lemma and the intermediate value theorem over a non-Archimedean field." J. Commut. Algebra 9 (2) 185 - 211, 2017. https://doi.org/10.1216/JCA-2017-9-2-185

Information

Published: 2017
First available in Project Euclid: 3 June 2017

zbMATH: 1376.12011
MathSciNet: MR3659948
Digital Object Identifier: 10.1216/JCA-2017-9-2-185

Subjects:
Primary: 12J15

Rights: Copyright © 2017 Rocky Mountain Mathematics Consortium

JOURNAL ARTICLE
27 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.9 • No. 2 • 2017
Back to Top