Abstract
Let $I$ be a square-free monomial ideal of a polynomial ring $R$ such that $\dim (R/I) = 2$. We give explicit formulas for computing the $a_i$-invariants $a_i(R/I^{(n)})$, $i=1,2$, and the Castelnuovo-Mumford regularity $\reg (R/I^{(n)})$ for all $n$. The values of these functions depend on the structure of an associated graph. It turns out that these functions are linear functions of $n$ for all $n \ge 2$.
Citation
Le Tuan Hoa. Tran Nam Trung. "Castelnuovo-Mumford regularity of symbolic powers of two-dimensional square-free monomial ideals." J. Commut. Algebra 8 (1) 77 - 88, 2016. https://doi.org/10.1216/JCA-2016-8-1-77
Information