Open Access
2016 Castelnuovo-Mumford regularity of symbolic powers of two-dimensional square-free monomial ideals
Le Tuan Hoa, Tran Nam Trung
J. Commut. Algebra 8(1): 77-88 (2016). DOI: 10.1216/JCA-2016-8-1-77

Abstract

Let $I$ be a square-free monomial ideal of a polynomial ring $R$ such that $\dim (R/I) = 2$. We give explicit formulas for computing the $a_i$-invariants $a_i(R/I^{(n)})$, $i=1,2$, and the Castelnuovo-Mumford regularity $\reg (R/I^{(n)})$ for all $n$. The values of these functions depend on the structure of an associated graph. It turns out that these functions are linear functions of $n$ for all $n \ge 2$.

Citation

Download Citation

Le Tuan Hoa. Tran Nam Trung. "Castelnuovo-Mumford regularity of symbolic powers of two-dimensional square-free monomial ideals." J. Commut. Algebra 8 (1) 77 - 88, 2016. https://doi.org/10.1216/JCA-2016-8-1-77

Information

Published: 2016
First available in Project Euclid: 28 March 2016

zbMATH: 06561092
MathSciNet: MR3482347
Digital Object Identifier: 10.1216/JCA-2016-8-1-77

Subjects:
Primary: 13D45

Keywords: Castelnuovo-Mumford regularity , square-free monomial ideals , symbolic power

Rights: Copyright © 2016 Rocky Mountain Mathematics Consortium

Vol.8 • No. 1 • 2016
Back to Top