Abstract
For any commutative ring $R$ of Krull dimension zero and for any discrete Hodge algebra $D$ over $R$, it is proven that, if $n\geq 3$, the group $E_n(D)$ of $n\times n$ elementary matrices acts transitively on $Um_n(D)$, the set of unimodular rows of length $n$ over $D$.
Citation
Md. Ali Zinna. "Projective modules and orbit space of unimodular rows over Discrete Hodge algebras over a non-Noetherian ring." J. Commut. Algebra 10 (3) 435 - 455, 2018. https://doi.org/10.1216/JCA-2018-10-3-435
Information