Open Access
2018 Cohomology of finite modules over short Gorenstein rings
Melissa C. Menning, Liana M. Şega
J. Commut. Algebra 10(1): 63-81 (2018). DOI: 10.1216/JCA-2018-10-1-63

Abstract

Let $R$ be a Gorenstein local ring with maximal ideal $\mathfrak{m} $ satisfying $\mathfrak{m} ^3=0\ne \mathfrak{m} ^2$. Set $\mathfrak{k} =R/\mathfrak{m} $ and $e=rank _{\mathfrak{k} }(\mathfrak{m} /\mathfrak{m} ^2)$. If $e>2$ and $M$, $N$ are finitely generated $R$-modules, we show that the formal power series \[ \sum _{i=0}^\infty rank _{\mathfrak{k} }\left (Ext ^i_R(M,N)\otimes _R\mathfrak{k} \right )t^i \] and \[ \sum _{i=0}^\infty rank _{\mathfrak{k} }\left (Tor _i^R(M,N)\otimes _R \mathfrak{k} \right )t^i \] are rational, with denominator $1-et+t^2$.

Citation

Download Citation

Melissa C. Menning. Liana M. Şega. "Cohomology of finite modules over short Gorenstein rings." J. Commut. Algebra 10 (1) 63 - 81, 2018. https://doi.org/10.1216/JCA-2018-10-1-63

Information

Published: 2018
First available in Project Euclid: 18 May 2018

zbMATH: 06875414
MathSciNet: MR3804847
Digital Object Identifier: 10.1216/JCA-2018-10-1-63

Subjects:
Primary: 13D07
Secondary: 13D02 , 13H10

Keywords: Gorensenstein ring , Koszul module , Poincaré series

Rights: Copyright © 2018 Rocky Mountain Mathematics Consortium

Vol.10 • No. 1 • 2018
Back to Top