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COHOMOLOGY OF FINITE MODULES
OVER SHORT GORENSTEIN RINGS

MELISSA C. MENNING AND LIANA M. ŞEGA

ABSTRACT. Let R be a Gorenstein local ring with
maximal ideal m satisfying m3 = 0 6= m2. Set k = R/m and
e = rankk(m/m2). If e > 2 and M , N are finitely generated
R-modules, we show that the formal power series

∞∑
i=0

rankk

(
ExtiR(M,N)⊗R k

)
ti

and
∞∑
i=0

rankk

(
TorRi (M,N)⊗R k

)
ti

are rational, with denominator 1− et + t2.

Introduction. Let (R,m, k) be a Noetherian commutative local
ring; m denotes the maximal ideal and k = R/m. If L is an R-module,
we set ν(L) = rankk(L/mL). Let M and N be finite (meaning finitely
generated) R-modules.

We consider the formal power series

EM,N
R (t) =

∞∑
i=0

ν
(
ExtiR(M,N)

)
ti

and

TRM,N (t) =

∞∑
i=0

ν
(
TorRi (M,N)

)
ti.
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Note that EM,k
R (t) = TRM,k(t) = TRk,M (t); this series is usually called the

Poincaré series of M , denoted PRM (t). The series Ek,N
R (t) is called the

Bass series of N .

Although rings with transcendental Poincaré series exist, significant
classes of rings R are known to satisfy the property that the Poincaré
series of all finite R-modules are rational, sharing a common denomi-
nator; see, for example, [9] for a recent development. If this property
holds, then the Bass series of all finite R-modules are also rational,
sharing a common denominator, see [10, Lemma 1.2].

Less is known about the series EM,N
R (t) and TRM,N (t) for arbitrary

M , N . If m2 = 0, then it is an easy exercise to show that (1 − et) ·
EM,N
R (t) ∈ Z[t], where e = ν(m). When R is a complete intersection

of codimension c, Avramov and Buchweitz [1, Proposition 1.3] showed

that (1− t2)c · EM,N
R (t) ∈ Z[t] for all finite M , N .

We consider R to be Gorenstein, with m3 = 0. In this case, Sjödin
[11] showed that the Poincaré series of all finite R-modules are rational,
sharing a common denominator. We prove that Sjödin’s result can be
extended as follows:

Theorem. Let (R,m, k) be a local Gorenstein ring with m3 = 0 6= m2,
and set e = ν(m). If e > 2 and M , N are finite R-modules, then

(1− et+ t2) · EM,N
R (t) ∈ Z[t]

and
(1− et+ t2) · TRM,N (t) ∈ Z[t].

When l(M⊗RN) <∞, with l(−) denoting length, modified versions

of the series EM,N
R (t) and TRM,N (t) may be defined as follows:

EM,N
R (t) =

∞∑
i=0

l
(
ExtiR(M,N)

)
ti

and

T RM,N (t) =

∞∑
i=0

l
(
TorRi (M,N)

)
ti.
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Under the assumptions of the Theorem, our proof reveals that
mExtiR(M,N) = 0 and mTorRi (M,N) = 0 for i � 0; hence, we also
have, cf., Corollary 3.2:

(1− et+ t2) · EM,N
R (t) ∈ Z[t]

and
(1− et+ t2) · T RM,N (t) ∈ Z[t].

When R is a complete intersection, rationality of EM,N
R (t) and T RM,N (t)

is known, due to Gulliksen [4]. On the other hand, Roos [8] gave an
example of a (non-Gorenstein) ring R with m3 = 0 and a module M

such that EM,M
R (t) is rational, while T RM,M (t) is transcendental. We

refer to [8] for the connections of such results with homology of free
loop spaces and cyclic homology.

The rings considered in this paper, i.e., Gorenstein rings with radical
cube zero, are homomorphic images of a hypersurface, via a Golod
homomorphism (see [2, 1.4]). As indicated by Roos, it is reasonable

to expect that the series EM,N
R (t) and T RM,N (t) are rational for all M ,

N with l(M ⊗R N) < ∞ whenever R is a homomorphic image of a
complete intersection via a Golod homomorphism. Along the same

lines, we may also expect that the series EM,N
R (t) and TRM,N (t) are

rational for such R, and any finite R-modules M , N .

An important aspect of our arguments is the use of the notion of
the Koszul module. The structure of Koszul modules in the case of
Gorenstein rings R with m3 = 0 is well understood, and is used heavily
in the proofs. The main ingredient in the proof consists of showing
that, under the hypotheses of the Theorem, the homomorphism

TorRi (mM,N) −→ TorRi (M,N)

induced by the inclusion mM ↪→ M is zero for i � 0 whenever the
module M is Koszul. This is the statement of Proposition 2.6, proven
in Section 2. The proof of the main theorem is given in Section 3.

1. Preliminaries. In this section we introduce notation and discuss
some background. We introduce the notion of the Koszul module, and
we give equivalent characterizations in the case of interest. Lemmas 1.1
and 1.4 will become instrumental in Section 2 in setting up an induction
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argument towards the proof of the main result, while Lemma 1.2
provides one of the key ideas in constructing the proof.

Throughout, (R,m, k) denotes a local commutative ring with maxi-
mal ideal m and k = R/m, and M , N are finite R-modules. We set

M = M/mM and ν(M) = rankk(M).

Lemma 1.1. Assume k is algebraically closed and ν(m) ≥ 2. Let M
be a finite R-module with m2M = 0 and such that ν(M) ≥ ν(mM).
There exists then x ∈M rmM such that ann(x) 6= m2.

Proof. Assume that ann(x) = m2 for every x ∈M rmM . If a ∈ R,
we denote by a its image in k = R/m. Set ν(mM) = n. Since m2M = 0,
note that mM has a vector space structure over k and rankk(mM) = n.
The structure is given by ax = ax for x ∈ mM and a ∈ R.

By hypothesis, we have ν(M) ≥ n. Let x1, . . . , xn be part of a
minimal generating set of M .

Claim. If α ∈ mrm2, then αx1, . . . , αxn is a basis of mM over k.

In order to prove this claim, assume that

b1(αx1) + · · ·+ bn(αxn) = b1(αx1) + · · ·+ bn(αxn) = 0

for some bi ∈ R. Set x = b1x1 + · · · + bnxn. We thus have αx = 0;
hence, α ∈ ann(x). If x /∈ mM , then ann(x) = m2 by assumption,
and thus, α ∈ m2, a contradiction. Consequently, x ∈ mM , and hence
bi ∈ m and thus bi = 0 for all i. This shows that αx1, . . . , αxn is linearly
independent over k. Since rankk(mM) = n, this set is a basis of mM ,
and the claim is proved.

Assume now that α, β is part of a minimal set of generators of m.
By the above, the sets αx1, . . . , αxn and βx1, . . . , βxn are both bases
of mM over k. We then have relations

(1.1) βxj =

n∑
i=1

pijαxi for all j with 1 ≤ j ≤ n,

where pij ∈ R, and the change of basis matrix P = (pij) is invertible.
Recall that k is algebraically closed, and let λ ∈ k be an eigenvalue
of P . Since P is invertible, we have λ 6= 0. Next, choose γ ∈ R so
that γ = −λ−1. Since λ = −(γ)−1 is an eigenvalue, we have det(P +
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(γ)−1I) = 0, where I is the n × n identity matrix, and it follows that
det(I + γP ) = 0, and hence, the matrix equation

(I + γP )b = 0

has a nontrivial solution b ∈ kn, where b = (b1, . . . , bn)T with bi ∈ R.
With this choice of γ and bi, we thus have

(1.2) bi + γ

n∑
j=1

pijbj ∈ m for all i with 1 ≤ i ≤ n.

Equations (1.2) and (1.1) yield:

(α+ βγ)(b1x1 + · · ·+ bnxn)

=
n∑
i=1

bi(αxi) + γ
n∑
j=1

bj(βxj)

=

n∑
i=1

(bi + γ

n∑
j=1

pijbj)(αxi) ∈ m2M

= 0.

Set x = b1x1 + · · · + bnxn, and note that x /∈ mM , since the vector
b ∈ kn is nontrivial, and thus, bi /∈ m for at least some i. We thus have
α+ βγ ∈ ann(x) and, since ann(x) = m2, it follows that α+ βγ ∈ m2.
This is a contradiction, since α, β is part of a minimal set of generators
for m. �

Let ϕ : M → N be a homomorphism. We denote by ϕ the induced
map ϕ : M → N . If A is a finite R-module, then, for each i, we let

TorRi (ϕ,A) : TorRi (M,A) −→ TorRi (N,A)

ExtiR(ϕ,A) : ExtiR(N,A) −→ ExtiR(M,A)

denote the induced maps. We also let

ιM : mM −→M and πM : M −→M

denote the inclusion, respectively, the canonical projection.

For each i, we set βRi (M) = rankk TorRi (M, k); this number is the
ith Betti number of M over R.
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The main ingredient in proving rationality of the series defined in the
introduction consists of showing that the maps TorRi (ιM , N) become
zero for large values of i, under certain assumptions on the ring and on
the modules. The next lemma is a first step in this direction, and it
will be further extended in Section 2.

Lemma 1.2. Let M and N be finite R-modules with ν(M) = 1.

Assume that there exists an integer i ≥ 0 such that TorRi (ιM , k) = 0
and βRi (M) > βRi (N).

(1) If ϕ ∈ HomR(M,N), then ϕ(M) ⊆ mN .
(2) If m2N = 0, then HomR(ιM , N) = 0.

Proof. Assume ϕ(M) 6⊆ mN . Since M is cyclic, the induced map
ϕ : M → N is injective. Since it is a homomorphism of vector spaces,
it has a splitting; hence, the induced maps TorRi (ϕ, k) : TorRi (M, k)→
TorRi (N, k) are injective for i ≥ 0. The short exact sequence

0 −→ mM −→M −→M −→ 0

induces the top exact row in the commutative diagram below:
(1.3)

TorRi (mM, k) TorRi (M, k) TorRi (M, k)

TorRi (N, k) TorRi (N, k)

TorRi (ιM ,k) TorRi (πM ,k)

TorRi (ϕ,k) TorRi (ϕ,k)

TorRi (πN ,k)

If TorRi (ιM , k) = 0, then TorRi (πM , k) is injective. The commutative

square then gives that TorRi (ϕ, k) is injective. We conclude that
βRi (M) ≤ βRi (N), a contradiction.

Thus, we have ϕ(M) ⊆ mN ; hence, (1) is established. In order to
prove (2), note that the image of ϕ under the map HomR(ιM , N) is the
composition ϕιM : mM → N . We have:

ϕιM (mM) ⊆ ϕ(mM) ⊆ mϕ(M) ⊆ m2N.

When m2N = 0, we conclude that ϕιM = 0, and thus, HomR(ιM , N)
= 0. �
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1.1. Hilbert and Poincaré series. The Hilbert series of M (over
R) is the formal power series

HM (t) =

∞∑
i=0

rankk

(
miM

mi+1M

)
ti .

The Poincaré series of M is the formal power series

PRM (t) =

∞∑
i=0

βRi (M)ti.

The next remark clarifies the attention we will give in Section 2
to the vanishing of the maps TorRi (ιM , N); such vanishing allows for
computations of the series of interest.

Remark 1.3. Assume that m2M = 0. The short exact sequence

0 −→ mM
ιM−−→M

πM−−→M −→ 0

induces for each i > 0 the following exact sequence:

0 −→ Li −→ TorRi (M,N)
TorRi (πM ,N)−−−−−−−−→ TorRi (M,N)

∆i−−→ TorRi−1(mM,N) −→ Li−1 −→ 0,

where Li is the image of the map TorRi (ιM , N). A length count gives:

l(TorRi (M,N)) = l(TorRi (M,N))− l(TorRi−1(mM,N))+ l(Li)+ l(Li−1).

Since both M and mM are k-vector spaces, we have

l(TorRi (M,N)) = rankk(TorRi (kν(M), N)) = ν(M)βRi (N);

l(TorRi−1(mM,N)) = rankk(TorRi−1(kν(mM), N)) = ν(mM)βRi−1(N).

Thus, we have

(1.4) l(TorRi (M,N)) ≥ ν(M)βRi (N)− ν(mM)βRi−1(N).

Equality holds in (1.4) if and only if Li = 0 = Li−1, and hence, if

and only if TorRi (ιM , N) = 0 = TorRi−1(ιM , N). In particular, from
here we obtain that the following two statements are equivalent when
m2M = 0:

(1) TorRi (ιM , N) = 0 for all i ≥ 0;
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(2)
∑∞
i=0 l(TorRi (M,N))ti = HM (−t) PRN (t).

Also, note that Li = 0 implies that TorRi (M,N) is isomorphic to

a submodule of TorRi (M,N), and hence, mTorRi (M,N) = 0. In
particular, condition (1) also implies:

(3)
∑∞
i=0 ν(TorRi (M,N))ti = HM (−t) PRN (t).

1.2. Koszul rings and modules. As defined in [5], an R-module M
is said to be Koszul if its linearity defect is 0; we refer to loc. cit. for
the definition of linearity defect, and we note that M is Koszul if and
only if the associated graded module grm(M) has a linear resolution
over grm(R). As noted in [5, 1.8], if M is Koszul, then

(1.5) PRM (t) =
HM (−t)
HR(−t)

.

The ring R is said to be Koszul if k is a Koszul module.

If R is Koszul and m2M = 0, then the following are equivalent:

(1) M is Koszul;

(2) TorRi (ιM , k) = 0 for all i ≥ 0;
(3) formula (1.5) holds.

See [2, 3.1] for the equivalence (1)⇔ (2) and Remark 1.3 for (2)⇔ (3).

Lemma 1.4. Assume that there exists a short exact sequence

0 −→ A
ϕ−→M

ψ−→ B −→ 0

of finite R-modules such that ϕ : A→M is injective. Let N be a finite
R-module.

(1) If TorRi (ιA, N) = 0 for some i, then TorRi (ϕ,N) is injective and

TorRi+1(ψ,N) is surjective.

(2) If TorRi (ιB , N) = TorRi−1(ιA, N) = TorRi (ιA, N) = 0 for some i,

then we also have TorRi (ιM , N) = 0.
(3) If R is a Koszul ring, m2M = 0 and M is Koszul, then B is

Koszul.
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Proof. The hypothesis that ϕ is injective yields a commutative
diagram with exact rows and columns:

(1.6)

0 0 0

0 mA mM mB 0

0 A M B 0

0 A M B 0

0 0 0

ιA

ψ′

ιM ιB

πA

ϕ ψ

πM πB

ϕ ψ

Note that the bottom row in this diagram is an exact sequence of
vector spaces; hence, it is split, and it remains exact when applying
TorRi (−, N). In particular, TorRi (ϕ,N) is injective and TorRi (ψ,N)
is surjective. Diagram (1.6) then induces the following commutative
diagram with exact rows and columns:
(1.7)

TorRi (mA,N) TorRi (mM,N) TorRi (mB,N)

TorRi (A,N) TorRi (M,N) TorRi (B,N)

0 −→ TorRi (A,N) TorRi (M,N) TorRi (B,N) −→ 0.

TorRi (ιA,N) TorRi (ιM ,N)

TorRi (ψ′,N)

TorRi (ιB ,N)

TorRi (πA,N)

TorRi (ϕ,N)

TorRi (πM ,N)

TorRi (ψ,N)

TorRi (πB ,N)

TorRi (ϕ,N) TorRi (ψ,N)

We then have:

(1) If TorRi (ιA, N) = 0, it follows that TorRi (πA, N) is injective. Since

TorRi (ϕ,N) is injective, the bottom left commutative square yields that

TorRi (ϕ,N) is injective as well. The fact that TorRi+1(ψ,N) is surjective
follows from the long exact sequence associated in homology with the
exact sequence from the statement.

(2) In view of part (1), the hypothesis that TorRi−1(ιA, N) =

TorRi (ιA, N) = 0 shows that TorRi (ϕ,N) is injective and TorRi (ψ,N)
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is surjective. The hypothesis also implies that TorRi (πA, N) and

TorRi (πB , N) are injective. A snake lemma argument using the bot-

tom two rows of (1.7) gives that TorRi (πM , N) is injective as well, and

thus, TorRi (ιM , N) = 0.

(3) The additional hypothesis that m2M = 0 gives that the top
row in (1.6) is an exact sequence of vector spaces. Consequently, it is

split, and in particular, TorRi (ψ′, k) is surjective for all i ≥ 0. Since

M is Koszul, we have TorRi (ιM , k) = 0 for all i ≥ 0. The upper right

commutative square in (1.7) with N = k then yields TorRi (ιB , k) = 0
for all i ≥ 0, and hence, B is Koszul, in view of 1.2. �

2. Koszul modules over short Gorenstein rings. In this sec-
tion, we focus our attention on Gorenstein local rings with m3 = 0. We
first present some necessary background material. The bulk of the sec-
tion concentrates upon the proof of Proposition 2.6 and its supporting
lemmas.

Throughout this section, (R,m, k) denotes a Gorenstein local ring
with m3 = 0 and m2 6= 0. We set e = ν(m), and we assume that e ≥ 2.

Let M and N be finite R-modules. For any N , set N∗ =
HomR(N,R). If ϕ : M → N is a homomorphism, then ϕ∗ : N∗ → M∗

denotes the induced map.

2.1. Syzygies. Let M be a finitely generated R-module, and let

(2.1) · · · −→ Fi
∂i−→ Fi−1 −→ · · · −→ F1

∂1−→ F0 −→ 0

be a minimal free resolution of M over R. Note that the Betti numbers
of M can be read off this resolution, namely, βRi (M) = rankR(Fi) for
all i ≥ 0. We set M0 = M and, for each i > 0, we set

Mi = Im(∂i).

The module Mi is called the ith syzygy of M . Since m3 = 0, the
minimality of the resolution shows that m2Mi = 0 for all i > 0. Now,
let

(2.2) · · · −→ Gi
di−→ Gi−1 −→ · · · −→ G1

d1−→ G0 −→ 0

be a minimal free resolution of M∗. Since R is Gorenstein and Artinian,
the dual of this resolution is also exact and gives a minimal injective
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resolution of M∗∗:

(2.3) 0 −→ F−1
∂−1−−→ F−2 −→ · · · −→ F−i

∂−i−−→ F−i−1 −→ · · ·

with F−i = G∗i−1 and ∂−i = d∗i .

Since M ∼= M∗∗, note that the resolutions in (2.1) and (2.3) can be
“glued” together through a map ∂0, yielding a complete resolution of
M :

· · · −→ Fi
∂i−→ Fi−1 −→ · · · −→ F1

∂1−→ F0
∂0−→ F−1

∂−1−−→ F−2 −→ · · ·

−→ F−i
∂−i−−→ F−i−1 −→ · · · .

This complex is acyclic, that is, its homology is zero in each degree. If
i > 0, we set

M−i = Im(∂−i).

If m2M = 0, then ∂0(F0) ⊆ mF−1, and the complete resolution
is minimal. Consequently, if M and N are two R-modules with
m2M = 0 = m2N , the minimal complete resolution shows that

M−i ∼= N ⇐⇒ M ∼= Ni for all i.

In a similar manner, we define negative Betti numbers, when m2M =
0, by setting βR−i(M) = rankR(F−i) for all i > 0. In particular, we have:

βR−i(M) = rankR(F−i) = rankR(Gi−1) = βRi−1(M∗)

M−i = Im(∂−i) = Im(d∗i )
∼= (Im di)

∗ = (M∗)i

Furthermore, since k∗ ∼= k, we have βR−i(k) = βRi−1(k) and k−i ∼= ki.

2.2. Koszul modules over short Gorenstein rings. With R as
above, the following statements are equivalent (see [2, 4.6]):

(1) M is Koszul;
(2) the syzgygy Mi does not split off a copy of k for any i > 0

(equivalently, M is exceptional, using the terminology of Lescot
[6]);

(3) M has no direct summand isomorphic to k−i for all i > 0.

In particular, it follows, as noted in [2, 4.6], that an indecomposable
module M over the short Gorenstein ring R is Koszul if and only if M
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is not isomorphic to k−i for any i > 0. Also, note that, if M is Koszul,
then Mi is Koszul for all i > 0.

Löfwall [7] showed that a Gorenstein ring with m3 = 0 and e ≥ 2
satisfies

(2.4) PRk (t) =
1

1− et+ t2
.

This result was recovered and used by Sjödin [11] to show that, for
every finitely generated R-module, one has:

(2.5) (1− et+ t2) · PRM (t) ∈ Z[t].

The results of [11] were recovered in [2], where it is also noted that
any such R is Koszul.

Note that formula (2.4) shows that the Betti numbers bi = βRi (k)
satisfy the relations b0 = 1, b1 = e and bi+1 = ebi − bi−1 for all i ≥ 1.
Since we have assumed that e ≥ 2, it inductively follows that the
sequence {βRi (k)}i≥0 is strictly increasing.

Remark 2.1. It is known that m2M = 0 when M is indecomposable
and not free; see, for instance, the proof of [2, 4.6].

Also, if m2M = 0 and M1 does not split off a copy of k, then the
following formulas hold, cf., [6, 3.3]:

ν(M1) = ν(M)e− ν(mM);(2.6)

ν(mM1) = ν(M).(2.7)

Lemma 2.2. Let I be an ideal of R. Then, R/I is not Koszul if and
only if I = m2.

Proof. Since R is Gorenstein with socle m2, note that m2 ∼= k. If
I = m2, it follows that k ∼= (R/I)1; hence, R/I is not Koszul.

Now, assume that R/I is not Koszul. Then, R/I ∼= k−i for some
i > 0; hence,

βRi−1(k) = βR−i(k) = βR0 (R/I) = 1.

Since the Betti numbers of k are strictly increasing, the equality
βRi−1(k) = 1 implies i = 1. We thus have R/I ∼= k−1. Since k−1

∼=
R/m2, we conclude I = m2. �
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Lemma 2.3. If I is a proper ideal of R and e > 2, then the sequence
{βRi (R/I)}i≥1 is strictly increasing and βRi (R/I) ≥ i for all i ≥ 0.

Proof. If I = m2, then βRi (R/m2) = βRi−1(m2) = βRi−1(k) for all i ≥ 1,

and the conclusion follows from the fact that the sequence {βRi (k)}i≥0

is strictly increasing.

Assume now that I 6= m2. Since I ⊆ m, we have mI ⊆ m2. Since
I 6= 0, and R is Gorenstein with socle m2, it follows that mI = m2.
Hence, m2(R/I) = 0. Set a = rankk(m/I). The assumption that
I 6= m2 gives a < e. The Hilbert series of R/I is HR/I(t) = 1 + at.
Since R/I is Koszul by Lemma 2.2, we have:

(2.8) PRR/I(t) =
1− at

1− et+ t2
.

Set bi = βRi (R/I) for i ≥ 0. We then have:

(2.9) 1− at =
(
b0 + b1t+ b2t

2 + b3t
3 + . . .

) (
1− et+ t2

)
.

From this equation, we derive the following: b0 = 1, b1 = e − a and
bi+2 = ebi+1 − bi for i ≥ 0. Note that b1 − b0 ≥ 0 since a < e. Let
n ≥ 1, and assume that bn − bn−1 ≥ n− 1. Since e > 2, we have

bn+1 − bn = (ebn − bn−1)− bn = bn(e− 1)− bn−1 > bn − bn−1 ≥ n− 1;

hence, bn+1−bn ≥ n. This inductive argument yields that bi+1−bi ≥ i
for all i ≥ 0. In particular, bi ≥ i for all i ≥ 0, and the sequence {bi}i≥1

is strictly increasing. �

Lemma 2.4. Assume that e > 2. If M is Koszul with ν(M) = 1, then

ExtiR(ιM , N) = 0 for all i with i > ν(N). Equivalently, TorRi (ιM , N) =
0 for all i with i > ν(N∗).

Proof. We may assume that M and N are indecomposable and not
free. In particular, it follows that m2M = 0 = m2N . Let i be such that
i > ν(N), and set L = N−i. Note that m2L = 0 and

ν(N) = β0(N) = βi(N−i) = βi(L).

Since M is cyclic, we have M ∼= R/I for a proper ideal I. Lemma 2.3
gives that βRi (M) ≥ i, and hence, βRi (M) > βRi (L) since i > ν(N).
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Since M is Koszul, we have TorRi (ιM , k) = 0 for all i, and Lemma 1.2
gives that HomR(ιM , L) = 0.

For each n ≥ 0, extract from a minimal complete resolution of N
the short exact sequence

(2.10) 0 −→ N−i+n+1 −→ Rc −→ N−i+n −→ 0

with c = βR−i+n(N), and consider the induced commutative diagram
with exact rows:
(2.11)

ExtnR(M,N−i+n) Extn+1
R (M,N−i+n+1) Extn+1

R (M,Rc)

ExtnR(mM,N−i+n) Extn+1
R (mM,N−i+n+1) Extn+1

R (mM,Rc).

ExtnR(ιM ,N−i+n)

∆n+1

Extn+1
R (ιM ,N−i+n+1)

We prove by induction on n that ExtnR(ιM , N−i+n) = 0 for all n ≥ 0.
This holds for n = 0 since we know that HomR(ιM , L) = 0.

Assume now that n ≥ 0 and ExtnR(ιM , N−i+n) = 0. The connecting
homomorphism ∆n+1 in (2.11) is surjective due to the fact that we
have Extn+1

R (M,Rc) = 0, since R is Gorenstein Artinian. (It is an
isomorphism when n ≥ 1.) The commutative square on the left yields
that Extn+1

R (ιM , N−i+n+1) = 0.

We thus have ExtnR(ιM , N−i+n) = 0 for all n ≥ 0. Taking n =
i and noting that N0 = N , we obtain the desired conclusion that
ExtiR(ιM , N) = 0 for all i > ν(N). In particular, we have ExtiR(ιM , N

∗)
= 0 for all i > ν(N∗). Finally, note that ExtiR(ιM , N

∗) = 0 if and only

if TorRi (ιM , N) = 0, in view of the canonical isomorphisms given by
duality. �

Lemma 2.5. Assume that m2M = 0. If M1 does not split off a copy
of k, then TorRi (ιM , N) = 0 for i � 0 if and only if TorRi (ιM1

, N) = 0
for i� 0.

Proof. By (1.4), we have inequalities

l(TorRi+1(M,N)) ≥ ν(M)βi+1(N)− ν(mM)βi(N);(2.12)

l(TorRi (M1, N)) ≥ ν(M1)βi(N)− ν(mM1)βi−1(N).(2.13)
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We have TorRi (ιM , N) = 0 for i� 0 if and only if (2.12) is an equality

for i� 0, and TorRi (ιM1 , N) = 0 for all i� 0 if and only if (2.13) is an

equality for i � 0. Since TorRi (M1, N) ∼= TorRi+1(M,N), it suffices to
show that

(2.14) ν(M)βi+1(N)−ν(mM)βi(N) = ν(M1)βi(N)−ν(mM1)βi−1(N)

for i� 0. Since the Poincaré series of N is rational with denominator
1− et+ t2, we have

(2.15) βi+1(N) = eβi(N)− βi−1(N) for i� 0.

Let i be large enough so that (2.15) holds. Using first (2.15) and then
(2.6) and (2.7), we establish (2.14) as follows:

ν(M)βi+1(N)− ν(mM)βi(N)

= ν(M)(eβi(N)− βi−1(N))− ν(mM)βi(N)

= (ν(M)e− ν(mM))βi(N)− ν(M)βi−1(N)

= ν(M1)βi(N)− ν(mM1)βi−1(N).

As noted above, this finishes the proof. �

We are now ready to eliminate the assumption that ν(M) = 1 in
Lemma 2.4.

Proposition 2.6. If e > 2 and M is Koszul, then TorRi (ιM , N) = 0
for i� 0.

Remark 2.7. If e = 2, then the conclusion of the proposition may not
hold. Indeed, if R = k[x, y]/(x2, y2) and N = R/(x), then a minimal
free resolution of N over R is

· · · −→ R
x−→ R −→ · · · −→ R

x−→ R
x−→ R;

hence, TorRi (M,N) ∼= M for any M with xM = 0. When M = R/(x)

as well, the map TorRi (ιM , N) can thus be identified with the inclusion
mM ↪→M .

Proof of Proposition 2.6. Let (R′,m′, k′) be a local ring with k′ al-
gebraically closed, where R → R′ is an inflation in the sense of [3,
Appendix, Thm. 1, Corollaire], that is, R′ is flat over R and m′ = R′m.
For each finite R-module we set M ′ = M ⊗R R′. As noted in [2, 1.8],
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M is Koszul if and only if M ′ is Koszul over R′. Also, note that we can
make the identifications (M)′ = M ′/m′M ′ and (mM)′ = m′M ′. The

maps TorRi (πM , N) and TorR
′

i (πM ′ , N
′) are simultaneously injective,

since R → R′ is faithfully flat; hence, TorRi (ιM , N) = 0 if and only if

TorR
′

i (ιM ′ , N
′) = 0. We may thus assume that k is algebraically closed.

We may also assume that M is indecomposable and non-free, and
this implies m2M = 0 as in Remark 2.1.

We prove by induction on n the following statement:

If M is a Koszul R-module such that m2M = 0 and ν(mM) =

n, then TorRi (ιM , N) = 0 for i� 0.

The statement is trivially true when n = 0, since mM = 0 in this case.
Let n ≥ 1, and assume that TorRi (ιM , N) = 0 for i � 0 for all Koszul
modules M with m2M = 0 and ν(mM) ≤ n− 1.

Let M be a Koszul R-module with m2M = 0 and ν(mM) = n. We

will show that TorRi (ιM , N) = 0 for i � 0. It suffices to establish the
conclusion when M is indecomposable; thus, we will assume this.

Case 2.8. Assume that ν(M) ≤ n − 1. In this case, we have
ν(mM1) = ν(M) ≤ n − 1 by Remark 2.1. Since M is Koszul, note
that M1 is Koszul and M1 does not split off a copy of k. The induction
hypothesis, applied to M1, shows that TorRi (ιM1

, N) = 0 for i� 0, and

then, Lemma 2.5 gives TorRi (ιM , N) = 0 for i� 0.

Case 2.9. Assume that ν(M) ≥ n. By Lemma 1.1, there exists an
x ∈ M r mM such that ann(x) 6= m2. Set A = Rx and B = M/A.
Note that the map A→M induced by the inclusion A ↪→M is injective
since x /∈ mM . If ann(x) = m, then A ∼= k, and this implies that M
splits off a copy of k; hence, M ∼= k since M is assumed indecomposable.
In this case, the statement trivially holds since mM = 0. We may thus
assume that ann(x) 6= m as well.

Since ann(x) 6= m2, Lemma 2.2 shows that A is Koszul. It follows

that TorRi (ιA, N) = 0 for i � 0 by Lemma 2.4. Since m2M = 0, we
also have m2A = 0 = m2B, and the top exact row in the commutative
diagram (1.6) is an exact sequence of vector spaces

0 −→ mA −→ mM −→ mB −→ 0,
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which gives
n = ν(mM) = ν(mA) + ν(mB).

Since ann(x) 6= m, we have ν(mA) 6= 0, and hence, ν(mB) ≤ n−1. Note
that B is Koszul by Lemma 1.4 (c), and the induction hypothesis gives

TorRi (ιB , N) = 0 for i� 0. Lemma 1.4 (b) then yields TorRi (ιM , N) = 0
for i� 0.

The induction argument is finished, thus establishing the conclusion.
�

3. Proof of the main theorem. In this section, we prove the main
theorem stated in the introduction.

Theorem 3.1. Let (R,m, k) be a local Gorenstein ring with m3 = 0 6=
m2, and set e = ν(m). If e > 2 and M , N are finitely generated
R-modules, then the following hold :

(1) mTorRi (M,N) = 0 for i� 0;
(2) mExtiR(M,N) = 0 for i� 0;

(3) (1− et+ t2) · TRM,N (t) ∈ Z[t];

(4) (1− et+ t2) · EM,N
R (t) ∈ Z[t].

Proof. Statements (2) and (4) follow from statements (1), respec-
tively (3), by duality. Below, we prove (1) and (3).

We may assume that both M and N are indecomposable and
not free. In particular, m2M = 0 = m2N . Let j ≥ 0. Since
TorRi+j(M,N) ∼= TorRi (Mj , N) for all i ≥ 1, statement (1) holds if

and only if mTorRi (Mj , N) = 0 for i � 0, and statement (3) holds if

and only if (1− et+ t2) · TRMj ,N (t) ∈ Z[t].

Assume first that M is not Koszul; hence, k ∼= Mj for some j ≥ 1
(see subsection 2.2). In view of the above observation, it suffices to
prove the statement for M = k and, in this case, (1) is clear, and (3)

follows from the fact that TRk,N (t) = PRN (t) is rational with denominator

1− et+ t2, as proven by Sjödin [11].

Now assume that M is a Koszul module. Proposition 2.6 gives that
there exists an integer s such that TorRi (ιM , N) = 0 for i ≥ s. By

Remark 1.3, we have that mTorRi (M,N) = 0 for all i ≥ s, proving (1),
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and

ν(TorRi (M,N)) = l(TorRi (M,N)) = ν(M)βRi (N)− ν(mM)βRi−1(N)

for all i > s. We thus have:

TRM,N (t) =

s∑
i=0

ν(TorRi (M,N))ti + ν(M)
∑
i≥s+1

βRi (N)ti

− ν(mM)t
∑
i≥s+1

βRi−1(N)ti−1.

It follows from here that TRM,N (t) − HM (−t) PRN (t) ∈ Z[t]. The

conclusion of (3) follows, again using the fact that PRN (t) is rational
with denominator 1− et+ t2. �

When l(M ⊗R N) < ∞, we define a modified version of the series

EM,N
R (t) and TRM,N (t) as follows:

EM,N
R (t) =

∞∑
i=0

l
(
ExtiR(M,N)

)
ti ∈ Z[[t]],

T RM,N (t) =

∞∑
i=0

l
(
TorRi (M,N)

)
ti ∈ Z[[t]].

Under the assumptions of Theorem 3.1, parts (1) and (2) of its state-
ment give that

ν(ExtiR(M,N)) = l(ExtiR(M,N))

and
ν(TorRi (M,N)) = l(TorRi (M,N))

for i� 0; hence, we have the following corollary.

Corollary 3.2. Under the hypotheses of Theorem 3.1, the following
hold :

(1) (1− et+ t2) · EM,N
R (t) ∈ Z[t];

(2) (1− et+ t2) · T RM,N (t) ∈ Z[t].

Remark 3.3. Several classes of local rings, including that discussed in
this paper, are known to satisfy the property that the Poincaré series of
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all finite modules are rational, sharing a common denominator; see [9]
for a large class of Gorenstein Artinian rings. In all known cases, such
rings are homomorphic images of a complete intersection via a Golod
homomorphism. As also mentioned in [8], it seems reasonable to expect

that similar rationality results for the series T RM,N (t), EM,N
R (t), TRM,N (t)

and EM,N
R (t) hold for other such classes.
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