Open Access
2012 Traveling Wave Solutions of the Nonlinear ( 3 + 1 ) -Dimensional Kadomtsev-Petviashvili Equation Using the Two Variables ( G / G , 1 / G ) -Expansion Method
E. M. E. Zayed, S. A. Hoda Ibrahim, M. A. M. Abdelaziz
J. Appl. Math. 2012: 1-8 (2012). DOI: 10.1155/2012/560531

Abstract

The two variables ( G / G , 1 / G ) -expansion method is proposed in this paper to construct new exact traveling wave solutions with parameters of the nonlinear ( 3 + 1 ) -dimensional Kadomtsev-Petviashvili equation. This method can be considered as an extension of the basic ( G / G ) -expansion method obtained recently by Wang et al. When the parameters are replaced by special values, the well-known solitary wave solutions and the trigonometric periodic solutions of this equation were rediscovered from the traveling waves.

Citation

Download Citation

E. M. E. Zayed. S. A. Hoda Ibrahim. M. A. M. Abdelaziz. "Traveling Wave Solutions of the Nonlinear ( 3 + 1 ) -Dimensional Kadomtsev-Petviashvili Equation Using the Two Variables ( G / G , 1 / G ) -Expansion Method." J. Appl. Math. 2012 1 - 8, 2012. https://doi.org/10.1155/2012/560531

Information

Published: 2012
First available in Project Euclid: 14 December 2012

zbMATH: 1251.65150
MathSciNet: MR2965716
Digital Object Identifier: 10.1155/2012/560531

Rights: Copyright © 2012 Hindawi

Vol.2012 • 2012
Back to Top