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The two variables (G′/G, 1/G)-expansion method is proposed in this paper to construct new
exact traveling wave solutions with parameters of the nonlinear (3 + 1)-dimensional Kadomtsev-
Petviashvili equation. This method can be considered as an extension of the basic (G′/G)-
expansion method obtained recently by Wang et al. When the parameters are replaced by special
values, the well-known solitary wave solutions and the trigonometric periodic solutions of this
equationwere rediscovered from the traveling waves.

1. Introduction

In the recent years, investigations of exact solutions to nonlinear PDEs play an important
role in the study of nonlinear physical phenomena. Many powerful methods have been
presented, such as the inverse scattering transform method [1], the Hirota method [2], the
truncated Painlevé expansion method [3–6], the Backlund transform method [7, 8], the
exp-function method [9–14], the tanh function method [15–18], the Jacobi elliptic function
expansion method [19–21], the original (G′/G)-expansion method [22–33], the two variables
(G′/G, 1/G)-expansion method [34, 35], and the first integral method [36]. The key idea of
the original (G′/G)-expansion method is that the exact solutions of nonlinear PDEs can be
expressed by a polynomial in one variable (G′/G) in which G = G(ξ) satisfies the second
ordinary differential equation G′′(ξ) + λG′(ξ) + μG(ξ) = 0, where λ and μ are constants.
In this paper, we will use the two variables (G′/G, 1/G)-expansion method, which can be
considered as an extension of the original (G′/G)-expansion method. The key idea of the
two variables (G′/G, 1/G)-expansion method is that the exact traveling wave solutions of
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nonlinear PDEs can be expressed by a polynomial in the two variables (G′/G) and (1/G),
in which G = G(ξ) satisfies a second order linear ODE, namely, G′′(ξ) + λG(ξ) = μ, where
λ and μ are constants. The degree of this polynomial can be determined by considering the
homogeneous balance between the highest order derivatives and nonlinear terms in the given
nonlinear PDEs, while the coefficients of this polynomial can be obtained by solving a set
of algebraic equations resulted from the process of using the method. According to Aslan
[29], the two variables (G′/G, 1/G)-expansion method becomes the basic (G′/G)-expansion
method if μ = 0 in (2.1) and bi = 0 in (2.12). Recently,Li et al. [34] have applied the two
variables (G′/G, 1/G)-expansionmethod and determined the exact solutions of the Zakharov
equations, while Zayed andabdelaziz [35] have applied this method to determine the exact
solutions of the nonlinear KdV-mKdV equation.

The objective of this paper is to apply the two variables (G′/G, 1/G)-expansion meth-
od to find the exact traveling wave solutions of the following nonlinear (3+1)-dimensional
Kadomtsev-Petviashvili equation:

uxt + 6(ux)2 + 6uuxx − uxxxx − uyy − uzz = 0. (1.1)

This equation describes the dynamics of solitons and nonlinear wave in plasma and
superfluids. Recently, Zayed [24] has found the exact solutions of (1.1) using the original
(G′/G)-expansion method, while Aslan [14] has discussed (1.1) using the exp-function
method. Comparison between our results and that obtained in [14, 24] will be discussed
later. The rest of this paper is organized as follows. In Section 2, the description of the two
variables (G′/G, 1/G)-expansionmethod is given. In Section 3, we apply this method to (1.1).
In Section 4, conclusions are obtained.

2. Description of the Two Variables (G′/G, 1/G)-Expansion Method

Before we describe the main steps of this method, we need the following remarks (see [34,
35]).

Remark 2.1. If we consider the second order linear ODE

G′′(ξ) + λG(ξ) = μ, (2.1)

and set φ = G′/G and ψ = 1/G, then we get

φ′ = −φ2 + μψ − λ, ψ ′ = −φψ. (2.2)

Remark 2.2. If λ < 0, then the general solutions of (2.1) is

G(ξ) = A1 sinh
(
ξ
√
−λ

)
+A2 cosh

(
ξ
√
−λ

)
+
μ

λ
, (2.3)
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where A1 and A2 are arbitrary constants. Consequently, we have

ψ2 =
−λ

λ2σ + μ2

(
φ2 − 2μψ + λ

)
, (2.4)

where σ = A2
1 −A2

2.

Remark 2.3. If λ > 0, then the general solutions of (2.1) is

G(ξ) = A1 sin
(
ξ
√
λ
)
+A2 cos

(
ξ
√
λ
)
+
μ

λ
, (2.5)

and hence

ψ2 =
−λ

λ2σ − μ2

(
φ2 − 2μψ + λ

)
. (2.6)

where σ = A2
1 +A

2
2.

Remark 2.4. If λ = 0, then the general solutions of (2.1) is

G(ξ) =
μ

2
ξ2 +A1ξ +A2, (2.7)

and hence

ψ2 =
1

A2
1 − 2μA2

(
φ2 − 2μψ

)
, (2.8)

Suppose we have the following NLPDEs in the form:

F(u, ut, ux, uxx, utt, . . .) = 0, (2.9)

where F is a polynomial in u and its partial derivatives. In the following, we give the main
steps of the two variables (G′/G, 1/G)-expansion method [34, 35].

Step 1. The traveling wave variable

u(x, t) = u(ξ), ξ = x − V t (2.10)

reduces (2.9) to an ODE in the form

P
(
u, u′, u′′, . . .

)
= 0, (2.11)

where V is a constant and P is a polynomial in u and its total derivatives, while { }′ = d/dξ.
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Step 2. Suppose that the solutions of (2.11) can be expressed by a polynomial in the two
variables φ and ψ as follows:

u(ξ) =
i=N∑
i=0

aiφ
i +

i=N∑
i=1

biφ
i−1ψ, (2.12)

where ai (i = 0, 1, . . . ,N) and bi (i = 1, . . . ,N) are constants to be determined later.

Step 3. Determine the positive integer N in (2.12) by using the homogeneous balance
between the highest order derivatives and the nonlinear terms in (2.11).

Step 4. Substitute (2.12) into (2.11) along with (2.2) and (2.4), the left-hand side of (2.11)
can be converted into a polynomial in φ and ψ, in which the degree of ψ is not longer
than 1. Equating each coefficients of this polynomial to zero yields a system of algebraic
equations which can be solved by using the Maple or Mathematica to get the values of
ai, bi, V, μ, A1, A2, and λ where λ < 0. Thus, we get the exact solutions in terms of the
hyperbolic functions.

Step 5. Similar to Step 4, substitute (2.12) into (2.11) along with (2.2) and (2.6) for λ > 0 (or
(2.2) and (2.8) for λ = 0), we obtain the exact solutions of (2.11) expressed by trigonometric
functions (or by rational functions), respectively.

3. An Application

In this section, we apply the method described in Section 2, to find the exact traveling wave
solutions of the nonlinear (3+1)-dimensional Kadomtsev-Petviashvili equation (1.1). To this
end, we see that the traveling wave variables ξ = x + y + z − V t reduce (1.1) to the following
ODE:

−(2 + V )u′′ + 6
(
u′
)2 + 6uu′′ − u′′′′ = 0. (3.1)

Balancing u′′′′ with uu′′ in (3.1)we getN = 2. Consequently, we get

u(ξ) = a0 + a1φ(ξ) + a2φ2(ξ) + b1ψ(ξ) + b2φ(ξ)ψ(ξ), (3.2)

where a0, a1, a2, b1, and b2 are constants to be determined later. There are three cases to be
discussed as follows.

Case 1. Hyperbolic function solutions (λ < 0).
If λ < 0, substituting (3.2) into (3.1) and using (2.2) and (2.4), the left-hand side of (3.1)

becomes a polynomial in φ and ψ. Setting the coefficients of this polynomial to zero yields
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a system of algebraic equations in a0, a1, a2, b1, b2, μ, σ, and λ which can be solved by
using the Maple or Mathematica to find the following results:

a0 = a0, a1 = 0, a2 = 1, b1 = −μ, b2 = ±
√

−(λ2σ + μ2)

λ
, V = 6a0 − 5λ − 2.

(3.3)

From (2.3), (3.2), and (3.3), we deduce the traveling wave solution of (1.1) as follows:

u(ξ) = a0 −
μ

A1 sinh
(
ξ
√
−λ

)
+A2 cosh

(
ξ
√
−λ

)
+
(
μ/λ

)

−
A1 cosh

(
ξ
√
−λ

)
+A2 sinh

(
ξ
√
−λ

)

(
A1 sinh

(
ξ
√
−λ

)
+A2 cosh

(
ξ
√
−λ

)
+ μ/λ

)2

×
[
A1λ cosh

(
ξ
√
−λ

)
+A2λ sinh

(
ξ
√
−λ

)
∓
√
λ2σ + μ2

]
,

(3.4)

where

ξ = x + y + z − (6a0 − 5λ − 2)t. (3.5)

In particular, by setting A1 = 0, A2 > 0 and μ = 0 in (3.4), we have the solitary solution

u(ξ) = a0 − λ tanh
(
ξ
√
−λ

)[
tanh

(
ξ
√
−λ

)
∓ i sech

(
ξ
√
−λ

)]
, (3.6)

where i =
√−1, while if A2 = 0, A1 > 0, and μ = 0, then we have the solitary solution

u(ξ) = a0 − λ coth
(
ξ
√
−λ

)[
coth

(
ξ
√
−λ

)
∓ csch

(
ξ
√
−λ

)]
. (3.7)

Case 2. Trigonometric function solutions (λ > 0).
If λ > 0, substituting (3.2) into (3.1) and using (2.2) and (2.6), we get a polynomial in

φ and ψ. Vanishing each coefficient of this polynomial to get the algebraic equations which
can be solved by using the Maple or Mathematica to find the following results:

a0 = a0, a1 = 0, a2 = 1, b1 = −μ, b2 = ±
√
λ2σ − μ2

λ
, V = 6a0 − 5λ − 2.

(3.8)
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From (2.5), (3.2), and (3.8), we deduce the traveling wave solution of (1.1) as follows:

u(ξ) = a0 −
μ

A1 sin
(
ξ
√
λ
)
+A2 cos

(
ξ
√
λ
)
+
(
μ/λ

)

+
A1 cos

(
ξ
√
λ
)
−A2 sin

(
ξ
√
λ
)

(
A1 sin

(
ξ
√
λ
)
+A2 cos

(
ξ
√
λ
)
+ μ/λ

)2

×
[
A1λ cos

(
ξ
√
λ
)
−A2λ sin

(
ξ
√
λ
)
±
√
λ2σ − μ2

]
,

(3.9)

where ξ has the same form (3.5).
In particular, by setting A1 = 0, A2 > 0, and μ = 0 in (3.9), we have the periodic

solution

u(ξ) = a0 + λ tan
(
ξ
√
λ
)[

tan
(
ξ
√
λ
)
∓ sec

(
ξ
√
λ
)]
, (3.10)

while if A2 = 0, A1 > 0, and μ = 0, then we have the periodic solution

u(ξ) = a0 + λcot
(
ξ
√
λ
)[

cot
(
ξ
√
λ
)
± csc

(
ξ
√
λ
)]
. (3.11)

Case 3. Rational function solutions (λ = 0).
If λ = 0, substituting (3.2) into (3.1) and using (2.2) and (2.8), we get a polynomial in

φ and ψ. Setting each coefficients of this polynomial to be zero to get the algebraic equations
which can be solved by using the Maple or Mathematica to find the following results:

a0 = a0, a1 = 0, a2 = 1, b1 = −μ, b2 = ±
√
A2

1 − 2μA2, V = 6a0 − 2.

(3.12)

From (2.7), (3.2), and (3.12), we deduce the traveling wave solution of (1.1) as follows:

u(ξ) = a0 −
μ(

μ/2
)
ξ2 +A1ξ +A2

+

(
μξ +A1

)(
μξ +A1 ±

√
A2

1 − 2μA2

)

((
μ/2

)
ξ2 +A1ξ +A2

)2 , (3.13)

where

ξ = x + y + z − (6a0 − 2)t. (3.14)

Remark 3.1. All solutions of this paper have been checked with Maple by putting them back
into the original equation (1.1).
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4. Conclusions

The two variables (G′/G, 1/G)-expansion method has been used in this paper to discuss
(1.1) and obtain the exact traveling wave solutions (3.4), (3.9), and (3.13) of Section 3. As
the two parametersA1 andA2 take special values, we obtain the solitary wave solutions (3.6)
and (3.7) and the trigonometric periodic solutions (3.10) and (3.11). On comparing these
solutions with the result (11) of [14] obtained by Aslan using the exp-function method as
well as the results (3.28)–(3.31) of [24] obtained by Zayed using the basic (G′/G)-expansion
method, we conclude that all these solutions of (1.1) are different and satisfying that equation.
The advantage of the two variables (G′/G, 1/G)-expansion method over the basic (G′/G)-
expansion method is that the first method is an extension of the second one.
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