Open Access
2012 Low-Order Nonconforming Mixed Finite Element Methods for Stationary Incompressible Magnetohydrodynamics Equations
Dongyang Shi, Zhiyun Yu
J. Appl. Math. 2012: 1-21 (2012). DOI: 10.1155/2012/825609

Abstract

The nonconforming mixed finite element methods (NMFEMs) are introduced and analyzed for the numerical discretization of a nonlinear, fully coupled stationary incompressible magnetohydrodynamics (MHD) problem in 3D. A family of the low-order elements on tetrahedra or hexahedra are chosen to approximate the pressure, the velocity field, and the magnetic field. The existence and uniqueness of the approximate solutions are shown, and the optimal error estimates for the corresponding unknown variables in L 2 -norm are established, as well as those in a broken H 1 -norm for the velocity and the magnetic fields. Furthermore, a new approach is adopted to prove the discrete Poincaré-Friedrichs inequality, which is easier than that of the previous literature.

Citation

Download Citation

Dongyang Shi. Zhiyun Yu. "Low-Order Nonconforming Mixed Finite Element Methods for Stationary Incompressible Magnetohydrodynamics Equations." J. Appl. Math. 2012 1 - 21, 2012. https://doi.org/10.1155/2012/825609

Information

Published: 2012
First available in Project Euclid: 14 December 2012

zbMATH: 1244.76025
MathSciNet: MR2927283
Digital Object Identifier: 10.1155/2012/825609

Rights: Copyright © 2012 Hindawi

Vol.2012 • 2012
Back to Top