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The nonconformingmixed finite element methods (NMFEMs) are introduced and analyzed for the
numerical discretization of a nonlinear, fully coupled stationary incompressible magnetohydrody-
namics (MHD) problem in 3D. A family of the low-order elements on tetrahedra or hexahedra
are chosen to approximate the pressure, the velocity field, and the magnetic field. The existence
and uniqueness of the approximate solutions are shown, and the optimal error estimates for the
corresponding unknown variables in L2-norm are established, as well as those in a broken H1-
norm for the velocity and the magnetic fields. Furthermore, a new approach is adopted to prove
the discrete Poincaré-Friedrichs inequality, which is easier than that of the previous literature.

1. Introduction

This work deals with the numerical discretization of a nonlinear, fully coupled stationary
incompressible MHD problem by a family of the low-order NMFEMs. This requires
discretizing a system of partial differential equations that couples the incompressible Navier-
Stokes equations with Maxwell’s equations.

The MHD problem has a number of applications such as liquid-metal cooling of
nuclear reactors, electromagnetic casting of metals, MHD power generation, and MHD ion
propulsion (cf. [1, 2]). Thus, many studies have already been devoted to the MHD problem.
For theoretical results, let us just mention those by [3–5]. It is important to employ effective
numerical methods to approximate the exact solutions of theMHDproblem because the exact
solutions can be obtained only for some special cases [2]. Compared with the finite difference
methods [6–8], most studies are performed by the finite element methods (FEMs) [9–24].
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Precisely speaking, the work started with [9], where inf-sup stable mixed elements
were used to discretize the velocity field and the pressure, and H1-conforming elements
for the magnetic field, and the existence and uniqueness of the discrete solutions with
inhomogeneous boundary condition satisfying certain assumptions were proved and the
convergence analysis was presented. In contrast to the results of [9], [10] derived the
same results without any restrictions on the boundary data of the velocity field. Reference
[11] examined the long-term dissipativity and unconditional nonlinear stability of time
integration algorithms for an incompressible MHD problem. Reference [12] dealt with a
decoupled linear MHD problem involving electrically conducting and insulating regions
by Lagrange finite elements and gave error estimates for a fully discrete scheme. For
convex polyhedral domains, or domains with a boundary C1,1, the convergence analysis of a
stabilized FEM, the optimal control method, and two-level FEMs were investigated in [13–
15], [16], and [17], respectively.

On the other hand, some different approaches to achieve convergence results in
general Lipschitz polyhedral domains were realized. For example, a mixed discrete formu-
lation about the problem based on H(curl)-conforming (edge) elements to approximate the
magnetic field was proposed in [18, 19]. This observation motivated the works such as the
least-squares mixed FEM used in [20], the mixed discontinuous Galerkin method employed
in [21, 22], and the splitting method presented in [23, 24]. However, all the analyses in [9–24]
are about the conforming FEMs except [22].

As we know, nonconforming FEMs have certain advantages over conforming FEMs
in some aspects. Firstly, the nonconforming elements are much easier to be constructed to
satisfy the discrete inf-sup condition. Secondly, nonconforming elements have been used
effectively especially in fluid and solid mechanics due to their stability. We refer to [25–34]
for more details on the properties of nonconforming elements applied to incompressible flow
problems.

For the Stokes equations, [25, 26] considered the approximations of nonconforming
P1/P0 element and the rotated Q1/Q0 element and got first-order accuracy, respectively.
Reference [27] modified the rotated Q1/Q0 element used in [26] and derived the same
convergence order as [26]. For the Navier-Stokes equations, [28–30] obtained maximum
norm estimates of P1/P0 element and the optimal error estimates of EQrot

1 /Q0 element both
in broken H1-norm for the velocity field and in L2-norm for the pressure with moving grids
and anisotropic meshes. Furthermore, NMFEMs also have been applied to other problems
such as the Darcy-Stokes equations [31], the conduction-convection problem [32, 33], and
the diffusion-convection-reaction equation [34].

Especially, [22] firstly presented aNMFEMwith exactly divergence-free velocities for a
incompressible MHD problemwhere the velocity and themagnetic fields were approximated
by divergence-conforming elements and curl-conformingNédélec elements, respectively, and
derived nearly optimal error estimates. Motivated by the ideas of [22, 32, 34–36], in this paper,
we are interested in discretizations for the MHD problem that are based on NMFEMs; a
family of the low order elements will be adopted as approximation spaces for the velocity
field, the piecewise constant element for the pressure, and the lowest order H1-conforming
element for the magnetic field on hexahedra or tetrahedra. The existence and uniqueness of
the approximate solutions are shown, and the optimal error estimates for the corresponding
unknown variables in L2-norm are established, as well as those in a broken H1-norm for
the velocity, and the magnetic fields. Furthermore, a new approach is adopted to prove the
discrete Poincaré-Friedrichs inequality, which is easier than that of the previous literature
[37, 38].
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The organization of this paper is as follows. In Section 2, we introduce the mixed
variational formulation for the MHD problem. Section 3 will give the nonconforming mixed
finite element schemes. In Section 4, we state some important lemmas and prove the existence
and uniqueness of the approximate solutions. In Section 5, the optimal error estimates for the
pressure, the velocity and the magnetic fields in L2-norm are established, as well as ones in
brokenH1-norm for the velocity and the magnetic fields.

Throughout the paper, C indicates a positive constant, possibly differs at different
occurrences, which is independent of the mesh parameter h, but may depend onΩ and other
parameters that appeared in this paper. Notations that are not especially explained are used
with their usual meanings.

2. Equations and the Mixed Variational Formulation

In this section, we will consider a nonlinear, fully coupled stationary incompressible MHD
problem in 3D as follows (see [9, 15]).

Problem (I). Find the velocity field u = (u1, u2, u3), the pressure p, the magnetic field B =
(B1, B2, B3) such that

−M−2Δu +N−1u · ∇u +∇p − R−1
m (∇ × B) × B = f in Ω,

R−1
m∇ × (∇ × B) − ∇ × (u × B) = 0 in Ω,

∇ · u = 0 in Ω,

∇ · B = 0 in Ω,

u = 0 on ∂Ω,

B · n = 0 on ∂Ω,

(∇ × B) × n = 0 on ∂Ω,

(2.1)

whereΩ is a simply connected, bounded domainwith unit outward normal n = (n1, n2, n3) on
∂Ω. M, N, and Rm are the Hartman number, interaction parameter, and magnetic Reynolds
number, respectively. The symbolsΔ,∇, and∇· denote the Laplace, gradient, and divergence
operators, respectively. ∇ × (∇ × B) = ∇(∇ · B) −ΔB. f ∈ H−1(Ω)3 is the body force.

Set

H1
0(Ω)3 =

{
v ∈ H1(Ω)3;v |∂Ω = 0

}
,

L2
0(Ω) =

{
q ∈ L2(Ω);

∫

Ω
q dx = 0

}
,

H1
n(Ω)3 =

{
v ∈ H1(Ω)3; (v · n) |∂Ω = 0

}
,

(2.2)

here and later, x = (x, y, z).
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The mixed variational formulation for Problem (I) is written as follows.

Problem (I1). Find (u, B) ∈W(Ω), p ∈ L2
0(Ω) such that

a((u, B), (u, B), (v,Ψ)) + b
(
(v,Ψ), p

)
= F((v,Ψ)), ∀(v,Ψ) ∈W(Ω),

b
(
(u, B), χ

)
= 0, ∀χ ∈ L2

0(Ω),
(2.3)

where

W(Ω) = H1
0(Ω)3 ×H1

n(Ω)3,

a((u, B), (v,Ψ), (w,Φ)) := a0((v,Ψ), (w,Φ)) + a1((u, B), (v,Ψ), (w,Φ)),

a0((v,Ψ), (w,Φ)) :=M−2
∫

Ω
∇v : ∇wdx + R−2

m

∫

Ω
[(∇ ×Ψ) · (∇ ×Φ) + (∇ ·Ψ)(∇ ·Φ)]dx,

a1((u, B), (v,Ψ), (w,Φ)) := c0(u;v,w) − c1(B;w,Ψ) + c2(B;v,Φ),

c0(u;v,w) :=
∫

Ω
(2N)−1(u · ∇v ·w − u · ∇w · v)dx,

c1(B;w,Ψ) :=
∫

Ω
R−1
m (∇ ×Ψ) × B ·wdx,

c2(B;v,Φ) :=
∫

Ω
R−1
m (∇ ×Φ) × B · v dx,

b
(
(v,Ψ), χ

)
:= −

∫

Ω
χ∇ · v dx, F((v,Ψ)) :=

∫

Ω
fv dx.

(2.4)

It has been shown in [9, 37, 38] that for u, v,w ∈ H1
0(Ω)3, B,Ψ,Φ ∈ H1

n(Ω)3, there hold

c0(u;v,w) = −c0(u;w,v), c0(w;v, v) = 0,

a1((u, B), (v,Ψ), (w,Φ)) = −a1((u, B), (w,Φ), (v,Ψ)),

a1((u, B), (v,Ψ), (v,Ψ)) = 0.

(2.5)

Let Z(Ω) = {v ∈ H1
0(Ω)3,∇ · v = 0}. For v ∈ H1

0(Ω)3 and Ψ ∈ H1
n(Ω)3, we will equip

W(Ω)with the norm

‖(v,Ψ)‖W :=
(
‖v‖21 + ‖Ψ‖21

)1/2
,

∥∥f∥∥−1 := sup
(0,0)/= (v,Ψ)∈W(Ω)

f((v,Ψ))
‖(v,Ψ)‖W

,

(2.6)

respectively, where ‖ · ‖1 is theH1-norm.
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The following result can be found in [9].

Theorem 2.1. If f ∈ H−1(Ω)3, then Problem (I1) has at least a solution, in addition, that is unique
provided that

C2γ3
(
C1γ1

)−2∥∥f∥∥−1 < 1 (2.7)

and satisfying the stability bound

‖(u, B)‖W ≤ (
C1γ1

)−1∥∥f∥∥−1, (2.8)

where γ1 = min{M−2, R−2
m }, γ2 = max{M−2, R−2

m }, γ3 = max{N−1, R−1
m } and C1, C2 are positive

constants only depending on the domain Ω.

3. Nonconforming Mixed Finite Element Schemes

Let Γh = {K} be regular and quasi-uniform tetrahedra or hexahedra partition ofΩwith mesh
size h. We use the finite element spaces X1h/⊆H1

0(Ω)3, Mh ⊂ L2
0(Ω) and X2h ⊂ H1

n(Ω)3 to
approximate the unknown variables u, p, and B. The following assumptions about the space
pair (X1h,Mh) are provided:

(A) for all K ∈ Γh, P1(K)3 ⊂ X1h;

(B) Mh = {χh ∈ L2
0(Ω);χh|K a constant, ∀K ∈ Γh};

(C) ‖ · ‖1h = (
∑

K∈Γh | · |21,K)1/2 is a norm X1h;

(D) for all vh ∈ X1h,
∫
F[v

h]ds = 0, F ⊂ ∂K;

(E) for all v ∈ H1
0(Ω)3, qh ∈ Mh, b1h(v − Π1v, qh) = 0, ‖Π1v‖1h ≤ C|v|1, where [vh]

stands for the jump of vh across the face F if F is an internal face, and it is equal to
vh itself if F ⊂ ∂Ω, Π1 is the interpolation operator associated with X1h satisfying
ΠK = Π1|K for K ∈ Γh, and P1(K) is the polynomial space of degree less than or
equal to one on K.

Introduce the finite element space

R1(K) =

⎧
⎨
⎩
P1(K) if K is tetrahedra,

Q1(K) if K is hexahedra.
(3.1)

The finite element space X2h is defined by

X2h =
{
Ψh ∈ H1

n(Ω)3; qh
∣∣∣
K
∈ (R1(K))3,

(
Ψh · n

)∣∣∣
∂Ω

= 0, ∀K ∈ Γh
}
, (3.2)

where Q1(K) is a space of polynomials whose degrees for x, y, z are equal to one. So these
are the nonconforming mixed finite element schemes.

Remark 3.1. It can be checked that the nonconforming finite elements studied in [25–33, 39–
45] satisfy the above assumptions (A)–(E).
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4. The Existence and Uniqueness of the Approximate
Solutions and Some Lemmas

In this section, we will prove some lemmas and the existence and uniqueness of the discrete
solutions of nonconforming mixed finite element approximations for MHD equations.

LetWh = X1h×X2h and the trilinear forms ah, a1h, cih (i = 0, 1, 2) and the bilinear forms
a0h and bh be defined as follows:

for (uh, Bh), (vh,Ψh), (wh,Φh) ∈Wh and χh ∈Mh,

ah
((
uh, Bh

)
,
(
vh,Ψh

)
,
(
wh,Φh

))

:= a0h
((
vh,Ψh

)
,
(
wh,Φh

))
+ a1h

((
uh, Bh

)
,
(
vh,Ψh

)
,
(
wh,Φh

))
,

(4.1)

a0h
((
vh,Ψh

)
,
(
wh,Φh

))

=
∑
K∈Γh

{
M−2

∫

K

∇vh · ∇wh + R−2
m

∫

K

[(
∇ ×Ψh

)
·
(
∇ ×Φh

)
+
(
∇ ·Ψh

)(
∇ ·Φh

)]}
dx,

(4.2)

a1h
((
uh, Bh

)
,
(
vh,Ψh

)
,
(
wh,Φh

))
:= c0h

(
uh;vh,wh

)
− c1h

(
Bh;wh,Ψh

)
+ c2h

(
Bh;vh,Φh

)
,

(4.3)

c0h
(
uh;vh,wh

)
:=

∑
K∈Γh

∫

K

(2N)−1
(
uh · ∇vh ·wh − uh · ∇wh · vh

)
dx, (4.4)

c1h
(
Bh;wh,Ψh

)
=:

∑
K∈Γh

∫

K

R−1
m

(
∇ ×Ψh

)
× Bh ·wh dx, (4.5)

c2h
(
Bh;vh,Φh

)
:=

∑
K∈Γh

∫

K

R−1
m

(
∇ ×Φh

)
× Bh · vh dx (4.6)

bh
((
vh,Ψh

)
, χh

)
:= −

∑
K∈Γh

∫

K

χh∇ · vh dx, (4.7)

respectively.
Then the approximate formulation of Problem (I1) reads as follows.

Problem (I2). Find (uh, Bh) ∈Wh, ph ∈Mh such that for all (vh,Ψh) ∈Wh, χh ∈Mh,

ah
((
uh, Bh

)
,
(
uh, Bh

)
,
(
vh,Ψh

))
+ bh

((
vh,Ψh

)
, ph

)
= F

((
vh,Ψh

))
,

bh
((
uh, Bh

)
, χh

)
= 0.

(4.8)

From the definition of (4.3), a1h satisfies the following antisymmetric properties [9]:

a1h
((
uh, Bh

)
,
(
vh,Ψh

)
,
(
vh,Ψh

))
= 0,

a1h
((
uh, Bh

)
,
(
vh,Ψh

)
,
(
wh,Φh

))
= −a1h

((
uh, Bh

)
,
(
wh,Φh

)
,
(
vh,Ψh

))
.

(4.9)
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Let Zh = {vh ∈ X1h, b((vh,Ψh), χh) = 0}. For all vh = (vh1 , v
h
2 , v

h
3 ) ∈ X1h,Ψh =

(Ψh
1 ,Ψ

h
2 ,Ψ

h
3) ∈ X2h, we define

∥∥∥vh
∥∥∥
0h

=

(∑
K∈Γh

∥∥∥vh
∥∥∥
2

0,K

)1/2

,
∥∥∥vh

∥∥∥
1h

=

(∑
K∈Γh

∣∣∣vh
∣∣∣
2

1,K

)1/2

,

∥∥∥(vh,Ψh)
∥∥∥
h
=

(∑
K∈Γh

∥∥∥vh
∥∥∥
2

1h
+
∥∥∥Ψh

∥∥∥
2

1

)1/2

,

∥∥f∥∥h := sup
(0,0)/= (vh,Ψh)∈X1h×X2h

F
((
vh,Ψh

))
∥∥(vh,Ψh)

∥∥
h

,

(4.10)

respectively. Then it is easy to see that ‖ · ‖0h and ‖ · ‖1h are the norms over X1h and ‖(·, ·)‖h is
the norm overWh.

Lemma 4.1. The following discrete Poincaré-Friedrichs inequality holds:

∥∥∥Ψh
∥∥∥
0
≤ C

∥∥∥∇ ×Ψh
∥∥∥
0
, ∀Ψh ∈ X2h. (4.11)

Proof. We consider the following problem:

∇ ×
(
∇ × B̃

)
= f in Ω,

∇ · B̃ = 0 in Ω,

B̃ · n = 0 on ∂Ω,
(
∇ × B̃

)
× n = 0 on ∂Ω.

(4.12)

Then by [3], the solution B̃ of (4.12) satisfies

∥∥∥∇ × B̃
∥∥∥
0
≤ C∥∥f∥∥0. (4.13)

On the one hand, by Green’s formula and Hölder’s inequality, we deduce that

∣∣∣∣
∫

Ω
fΨhdx

∣∣∣∣ =
∣∣∣∣∣
∑
K∈Γh

∫

K

(
∇ × B̃

)(
∇ ×Ψh

)
dx

∣∣∣∣∣

≤
∥∥∥∇ × B̃

∥∥∥
0

∥∥∥∇ ×Ψh
∥∥∥
0
.

(4.14)

Using (4.13)-(4.14) and choosing f = Ψh, we may get the desired result.

Remark 4.2. The method used in this lemma is different from and easier than that of [37, 38].
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Lemma 4.3. For (uh, Bh), (vh,Ψh), and (wh,Φh) ∈Wh, we have

(1) |c0h(uh;vh,wh)| ≤ C‖uh‖1h‖vh‖1h‖wh‖1h,
(2) |c1h(Bh;wh,Ψh)| ≤ C‖∇ ×Ψh‖0‖Bh‖1‖wh‖1h,
(3) |c2h(Bh;vh,Φh)| ≤ C‖∇ ×Φh‖0‖Bh‖1‖vh‖1h.

Proof. The first result is wellknown [30, 37, 38]. To prove the second result, we need the
imbedding properties H1

n(Ω)3 ↪→ H1(Ω)3 ↪→ L4(Ω)3 and the discrete imbedding inequality
showed in [30, 32]:

∥∥∥vh
∥∥∥
0,2k,Ω

≤ C
∥∥∥vh

∥∥∥
1h
, ∀vh ∈ X1h, k = 1, 2. (4.15)

Thus,

∣∣∣c1h
(
Bh;wh,Ψh

)∣∣∣ ≤
∑
K∈Γh

∫

K

1
Rm

∣∣∣
(
∇ ×Ψh

)
× Bh ·wh

∣∣∣dx

≤ 1
Rm

∥∥∥(∇ ×Ψh)
∥∥∥
0

∥∥∥Bh
∥∥∥
0,4

∥∥∥wh
∥∥∥
0,4

≤ C
∥∥∥(∇ ×Ψh)

∥∥∥
0

∥∥∥Bh
∥∥∥
1

∥∥∥wh
∥∥∥
1h
,

(4.16)

the assertion for c1h is proved. The proof for c2h is analogous.

Lemma 4.4. Let (uh, Bh), (vh,Ψh), and (wh,Φh) ∈Wh; then the following results hold:

(1) |a1h((uh, Bh), (vh,Ψh), (wh,Φh))| ≤ Ccγ3‖(uh, Bh)‖h‖(vh,Ψh)‖h‖(wh,Φh)‖h,
(2) |a0h((uh, Bh), (uh, Bh))| ≥ Caγ1‖(uh, Bh)‖2h,
(3) |a0h((uh, Bh), (vh,Ψh))| ≤ Cγ2‖(uh, Bh)‖h‖(vh,Ψh)‖h,

where Cc, Ca are positive constants, independent of h.

Proof. Firstly, using the triangle inequality and Lemma 4.3 yields

∣∣∣a1h
((
uh, Bh

)
,
(
vh,Ψh

)
,
(
wh,Φh

))∣∣∣

≤
∣∣∣c0h

(
uh;vh,wh

)∣∣∣ +
∣∣∣c1h

(
Bh;wh,Ψh

)∣∣∣ +
∣∣∣c2h

(
Bh;vh,Φh

)∣∣∣

≤ Ccγ3
∥∥∥(uh, Bh)

∥∥∥
h

∥∥∥(vh,Ψh)
∥∥∥
h

∥∥∥(wh,Φh)
∥∥∥
h
.

(4.17)

ApplyingH1
n(Ω)3 ↪→ H1(Ω)3 and the following inequality [9, 37, 38]

‖v‖0 ≤ C(‖∇ × v‖0 + ‖∇ · v‖0), ∀v ∈ H1
n(Ω)3 (4.18)
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leads to

a0h
((
uh, Bh

)
,
(
uh, Bh

))

=
∑
K∈Γh

{
M−2

∫

K

∇uh · ∇uh + R−2
m

∫

K

[(
∇ × Bh

)
·
(
∇ × Bh

)
+
(
∇ · Bh

)(
∇ · Bh

)]}
dx

=M−2
∥∥∥∇uh

∥∥∥
2

0h
+ R−2

m

(∥∥∥∇ × Bh
∥∥∥
2

0
+
∥∥∥∇ · Bh

∥∥∥
2

0

)

≥ Camin
{
M−2, R−2

m

}(∥∥∥uh
∥∥∥
2

1h
+
∥∥∥Bh

∥∥∥
2

1

)

= Caγ1
∥∥∥(uh, Bh)

∥∥∥
2

h
.

(4.19)

With the help of Hölder’s inequality, we find

∣∣∣a0h
((
uh, Bh

)
,
(
vh,Ψh

))∣∣∣

≤
∑
K∈Γh

{
M−2

∫

K

∣∣∣∇uh · ∇vh
∣∣∣ + R−2

m

∫

K

[∣∣∣
(
∇ × Bh

)
·
(
∇ ×Ψh

)∣∣∣ +
∣∣∣
(
∇ · Bh

)(
∇ ·Ψh

)∣∣∣
]}
dx

≤
{
M−2

∥∥∥∇uh
∥∥∥
0h

∥∥∥∇vh
∥∥∥
0h

+ CR−2
m

(∥∥∥∇ × Bh
∥∥∥
0

∥∥∥∇ ×Ψh
∥∥∥
0
+
∥∥∥∇ · Bh

∥∥∥
0

∥∥∥∇ ·Ψh
∥∥∥
0

)}

≤ Cmax
{
M−2, R−2

m

}∥∥∥(uh, Bh)
∥∥∥
h

∥∥∥(vh,Ψh)
∥∥∥
h

= Cγ2
∥∥∥(uh, Bh)

∥∥∥
h

∥∥∥(vh,Ψh)
∥∥∥
h
.

(4.20)

The proof is completed.

Lemma 4.5. The spacesX1h andMh satisfy the discrete inf-sup condition [37, 38]; that is, there exists
β� > 0 such that

inf
χh∈Mh

sup
(vh,Ψh)∈Wh

bh
((
vh,Ψh

)
, χh

)
∥∥(vh,Ψh)

∥∥
h

∥∥χh∥∥0

≥ β�. (4.21)

Proof. On the one hand, by [37, 38], there exists a constant β > 0 such that

inf
χ∈L2

0(Ω)
sup

(v,Ψ)∈W(Ω)

b
(
(v,Ψ), χ

)

‖(v,Ψ)‖W
∥∥χ∥∥0

≥ β. (4.22)
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Therefore, by the assumption (E) and (4.22), we obtain

sup
(vh,Ψh)∈Wh

bh
((
vh,Ψh

)
, χh

)
∥∥(vh,Ψh)

∥∥
h

≥ sup
(v,Ψh)∈H1

0 (Ω)3×X2h

bh
((
Π1v,Ψh

)
, χh

)
∥∥(Π1v,Ψh)

∥∥
h

= sup
(v,Ψh)∈H1

0 (Ω)3×X2h

bh
((
v,Ψh

)
, χh

)
∥∥(Π1v,Ψh)

∥∥
h

≥ 1
C

sup
(v,Ψh)∈H1

0 (Ω)3×X2h

b
((
v,Ψh

)
, χh

)
∥∥(v,Ψh)

∥∥
h

≥ β∗
∥∥∥χh

∥∥∥
0
,

(4.23)

where β� = β/C > 0. The proof is completed.

From Lemmas 4.4-4.5, we have the following.

Theorem 4.6. For f ∈ H−1(Ω)3, Problem (I2) has at least one solution ((uh, Bh), ph) ∈ Wh ×
Mh satisfying the stability bound ‖(uh, Bh)‖h ≤ (Caγ1)

−1‖f‖h. Moreover, Problem (I2) has a unique
solution provided that Ccγ3(Caγ1)

−2‖f‖h < 1.

5. The Convergence Analysis

In this section, we will state the main results of this paper, that is, the error estimates for the
velocity and the magnetic fields inH1-norm.

Theorem 5.1. Assume that
Ccγ3

∥∥f∥∥−1
CaC1γ

2
1

<
1
2
. (5.1)

Let ((u, B), p) ∈W(Ω)×L2
0(Ω) and ((uh, Bh), ph) ∈Wh ×Mh be the solutions of Problems (I1) and

(I2), respectively. Then there hold

(1)

∥∥∥(u, B) − (uh, Bh)
∥∥∥
h

≤ C
⎧
⎨
⎩ inf
(vh,Ψh)∈Wh

∥∥∥(u, B) −
(
vh,Ψh

)∥∥∥
h
+ inf
sh∈Mh

∥∥∥p − sh
∥∥∥
0
+ sup
(vh,Ψh)∈Zh×X2h

∣∣E((vh,Ψh
))∣∣

∥∥(vh,Ψh
)∥∥

h

⎫
⎬
⎭,

(5.2)

(2)

∥∥∥p − ph
∥∥∥
0

≤ C
⎧
⎨
⎩ inf
(vh,Ψh)∈Wh

∥∥∥(u, B) −
(
vh,Ψh

)∥∥∥
h
+ inf
sh∈Mh

∥∥∥p − sh
∥∥∥
0
+ sup
(vh,Ψh)∈Wh

∣∣E((vh,Ψh
))∣∣

∥∥(vh,Ψh
)∥∥

h

⎫
⎬
⎭,

(5.3)
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where

E
((
vh,Ψh

))
=
∑
K∈Γh

∫

∂K

[
M−2 ∂u

∂n
vh − pvh · n − (2N)−1(u · n)

(
u · vh

)]
ds. (5.4)

Proof. We proceed in two steps.

Step 1. For (vh,Ψh) ∈Wh, by Green’s formula, we have

a0h
(
(u, B),

(
vh,Ψh

))
+ a1h

(
(u, B), (u, B),

(
vh,Ψh

))
+ bh

((
vh,Ψh

)
, p
)
− F

((
vh,Ψh

))

=
∑
K∈Γh

{∫

K

M−2∇u · ∇vhdx + R−2
m

∫

K

(∇ × B) ·
(
∇ ×Ψh

)
dx

+ (2N)−1
∫

K

(
u · ∇u · vh − u · ∇vh · u

)
dx

− R−1
m

∫

K

[
(∇ × B) × B · vh −

(
∇ ×Ψh

)
× B · u

]
dx

−
∫

K

p · ∇vh dx −
∫

K

fvh dx
}

=
∑
K∈Γh

{∫

K

−M−2Δu · vh dx +
∫

∂K

M−2 ∂u
∂n

vh ds

+
∫

K

R−2
m∇ × (∇ × B) ·Ψh dx +

∫

∂K

R−2
m (∇ × B × n) ·Ψh ds

+
∫

K

N−1u · ∇u · vh dx −
∫

∂K

(2N)−1(u · n)
(
u · vh

)
ds

− R−1
m

∫

K

(∇ × B) × B · vh dx − R−1
m

∫

K

(∇ × u × B) ·Ψh dx

+
∫

∂K

(u × B × n) ·Ψh ds +
∫

K

∇p · vh dx −
∫

∂K

pvh · nds −
∫

K

fvh dx
}

=
∑
K∈Γh

{∫

K

(
−M−2Δu +N−1u · ∇u +∇p − R−1

m (∇ × B) × B − f
)
· vh

+ R−1
m

∫

K

[
R−1
m∇ × (∇ × B) − ∇ × (u × B)

]
·Ψh dx

+
∫

∂K

[
M−2 ∂u

∂n
vh − (2N)−1(u · n)

(
u · vh

)
− pvh · n

]
ds

}

= E
((
vh,Ψh

))
.

(5.5)

Thus,

a0h
(
(u, B),

(
vh,Ψh

))
+ a1h

(
(u, B), (u, B),

(
vh,Ψh

))
+ bh

((
vh,Ψh

)
, p
)

= F
((
vh,Ψh

))
+ E

((
vh,Ψh

))
.

(5.6)
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Here, we have used the following equality:

∫

Ω
(∇ ×Φ) ·Ψdx = −

∫

∂Ω
(Φ × n) ·Ψds +

∫

Ω
Φ · (∇ ×Ψ)dx. (5.7)

On the other hand, we have from (4.8)

a0h
((
uh, Bh

)
,
(
vh,Ψh

))
+ a1h

((
uh, Bh

)
,
(
uh, Bh

)
,
(
vh,Ψh

))
+ bh

((
vh,Ψh

)
, ph

)

= F
((
vh,Ψh

))
.

(5.8)

Subtraction of (4.8) from (5.6) yields

a0h
(
(u, B) −

(
uh, Bh

)
,
(
vh,Ψh

))
+ a1h

(
(u, B) −

(
uh, Bh

)
, (u, B),

(
vh,Ψh

))

+ a1h
((
uh, Bh

)
, (u, B) −

(
uh, Bh

)
,
(
vh,Ψh

))

+ bh
((
vh,Ψh

)
, p − ph

)
= E

((
vh,Ψh

))
.

(5.9)

Let (wh,Φh) be an arbitrary element of Zh ×X2h, that is:

bh
((
wh,Φh

)
, χh

)
= 0, ∀χh ∈Mh. (5.10)

Then,

bh
((
uh −wh, Bh −Φh

)
, χh

)
= bh

((
uh, Bh

)
, χh

)
− bh

((
wh,Φh

)
, χh

)
= 0. (5.11)

For all (vh,Ψh) ∈Wh, s
h ∈Mh, by virtue of (uh −wh, Bh −Φh) ∈ Zh ×X2h and (5.9), we get

a0h
((
wh,Φh

)
−
(
uh, Bh

)
,
(
vh,Ψh

))
+ a1h

((
wh,Φh

)
−
(
uh, Bh

)
, (u, B),

(
vh,Ψh

))

+ a1h
((
uh, Bh

)
,
(
wh,Φh

)
−
(
uh, Bh

)
,
(
vh,Ψh

))
+ bh

((
vh,Ψh

)
, sh − ph

)

= a0h
((
wh,Φh

)
− (u, B),

(
vh,Ψh

))
+ a1h

((
wh,Φh

)
− (u, B), (u, B),

(
vh,Ψh

))

+ a1h
((
uh, Bh

)
,
(
wh,Φh

)
− (u, B),

(
vh,Ψh

))
+ bh

((
vh,Ψh

)
, sh − p

)

+ E
((
vh,Ψh

))
.

(5.12)

Notice that

a1h
((
uh, Bh

)
,
(
wh,Φh

)
−
(
uh, Bh

)
,
(
wh,Φh

)
−
(
uh, Bh

))
= 0,

bh
((
uh −wh, Bh −Φh

)
, sh − ph

)
= 0.

(5.13)
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Let (vh,Ψh) = (wh,Φh) − (uh, Bh), and by (5.12), we obtain

a0h
((
wh,Φh

)
−
(
uh, Bh

)
,
(
wh,Φh

)
−
(
uh, Bh

))

+ a1h
((
wh,Φh

)
−
(
uh, Bh

)
, (u, B),

(
wh,Φh

)
−
(
uh, Bh

))

= a0h
((
wh,Φh

)
− (u, B),

(
wh,Φh

)
−
(
uh, Bh

))

+ a1h
((
wh,Φh

)
− (u, B), (u, B),

(
wh,Φh

)
−
(
uh, Bh

))

+ a1h
((
uh, Bh

)
,
(
wh,Φh

)
− (u, B),

(
wh,Φh

)
−
(
uh, Bh

))

+ bh
((
wh,Φh

)
−
(
uh, Bh

)
, sh − p

)
+ E

((
wh,Φh

)
−
(
uh, Bh

))
.

(5.14)

Using the continuity properties of a0h, a1h and the stability bounds for ‖(u, B)‖W and
‖(uh, Bh)‖h in Theorems 2.1 and 4.6, respectively, the right-hand side of (5.14) can be bounded
by

r.h.s. ≤
∥∥∥(wh,Φh) − (uh, Bh)

∥∥∥
h

×
[
Cγ2

∥∥∥(wh,Φh) − (u, B)
∥∥∥
h
+ Cc

∥∥∥(wh,Φh) − (u, B)
∥∥∥
h
‖(u, B)‖W

+Cc

∥∥∥(wh,Φh) − (u, B)
∥∥∥
h

∥∥∥(uh, Bh)
∥∥∥
h
+ C

∥∥∥sh − p
∥∥∥
0
+
E
((
wh,Φh

) − (uh, Bh))∥∥(wh,Φh) − (uh, Bh)
∥∥
h

]

≤ C
∥∥∥(wh,Φh)−(uh, Bh)

∥∥∥
h

[∥∥∥(wh,Φh)−(u, B)
∥∥∥
h
+
∥∥∥sh−p

∥∥∥
0
+
E
((
wh,Φh

)−( uh, Bh))∥∥(wh,Φh
)−(uh, Bh)∥∥h

]
.

(5.15)

Next, the coercivity property of the form a0h, continuity of a1h in Lemma 4.4, stability bound
for ‖(u, B)‖W in Theorem 2.1, and the assumptionCcγ3‖f‖−1/CaC1γ

2
1 < 1/2 allow us to bound

the left-hand side of (5.14) as

l.h.s. ≥ Caγ1
∥∥∥(wh,Φh) − (uh, Bh)

∥∥∥
2

h
− Ccγ3

∥∥∥(wh,Φh) − (uh, Bh)
∥∥∥
2

h
‖(u, B)‖W

≥ 1
2
Caγ1

∥∥∥(wh,Φh) − (uh, Bh)
∥∥∥
2

h
.

(5.16)

Combining these bounds, we have

∥∥∥(wh,Φh) − (uh, Bh)
∥∥∥
h
≤ C

[∥∥∥
(
wh,Φh

)
− (u, B)

∥∥∥
h
+
∥∥∥sh − p

∥∥∥
0
+
E
((
wh,Φh

) − (uh, Bh))∥∥(wh,Φh
) − (uh, Bh)∥∥h

]
.

(5.17)
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Then, applying the triangle inequality, we get

∥∥∥(u, B) − (uh, Bh)
∥∥∥
h
≤ C

[∥∥∥
(
wh,Φh

)
− (u, B)

∥∥∥
h
+
∥∥∥sh − p

∥∥∥
0
+
E
((
wh,Φh

) − (uh, Bh))∥∥(wh,Φh
) − (uh, Bh)∥∥h

]
.

(5.18)

Now, for (wh,Φh) ∈ Zh ×X2h, s
h ∈Mh, taking the infimum of (5.18) yields

∥∥∥(u, B) − (uh, Bh)
∥∥∥
h

≤ C
⎡
⎣ inf
(wh,Φh)∈Zh×X2h

∥∥∥
(
wh,Φh

)
− (u, B)

∥∥∥
h
+ inf
sh∈Mh

∥∥∥sh − p
∥∥∥
0
+ sup
(vh,Ψh)∈Zh×X2h

E
((
vh,Ψh

))
∥∥(vh,Ψh

)∥∥
h

⎤
⎦.

(5.19)

With the argument as [37], we know that

inf
(wh,Φh)∈Zh×X2h

∥∥∥(wh,Φh) − (u, B)
∥∥∥
h
≤ C inf

(vh,Ψh)∈Wh

∥∥∥(wh,Φh) − (u, B)
∥∥∥
h
. (5.20)

Substituting (5.20) into (5.19) implies (5.2).

Step 2. For (vh,Ψh) ∈Wh, s
h ∈Mh, we have from (5.9) that

bh
((
vh,Ψh

)
, sh − ph

)
= bh

((
vh,Ψh

)
, sh − p

)
+ bh

((
vh,Ψh

)
, p − ph

)

= bh
((
vh,Ψh

)
, sh − p

)
− a0h

(
(u, B) −

(
uh, Bh

)
,
(
vh,Ψh

))

− a1h
(
(u, B) −

(
uh, Bh

)
, (u, B),

(
vh,Ψh

))

− a1h
((
uh, Bh

)
, (u, B) −

(
uh, Bh

)
,
(
vh,Ψh

))

+ E
((
vh,Ψh

))
.

(5.21)

Using the continuity properties of a0h and a1h and the discrete inf-sup condition (4.21) of
Lemma 4.5, it follows that

∥∥∥sh − ph
∥∥∥
0

≤ 1
β�

{
C
∥∥∥sh−p

∥∥∥
0
+
[
Cγ2+Cc

(
‖(u, B)‖W+

∥∥∥
(
uh, Bh

)∥∥∥
h

)]∥∥∥(u, B)−
(
uh, Bh

)∥∥∥
h
+
E
((
vh,Ψh

))
∥∥(vh,Ψh

)∥∥
h

}
.

(5.22)

Then, with the help of the triangle inequality and (5.2), we complete the proof.
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Theorem 5.2. Let u ∈ (H1
0(Ω)3 ∩H2(Ω)3), B ∈ (H2(Ω)3 ∩H1

n(Ω)3), p ∈ (L2
0(Ω) ∩H1(Ω)), and

((uh, Bh), ph) ∈Wh ×Mh be the solutions of Problems (I1) and (I2), respectively. Then there holds
∥∥∥(u, B) − (uh, Bh)

∥∥∥
h
+
∥∥∥p − ph

∥∥∥
0
≤ Ch(|u|2 + ‖B‖2 +

∥∥p∥∥1

)
. (5.23)

Proof. On the one hand, the interpolation theory gives

inf
vh∈X1h

∥∥∥u − vh
∥∥∥
2

1h
≤
∥∥∥u −Π1u

∥∥∥
2

1h
≤ Ch2|u|22,

inf
Ψh∈X2h

∥∥∥B −Ψh
∥∥∥
2

1
≤ Ch2‖B‖22.

(5.24)

Therefore, by (5.24), we obtain

inf
(vh,Ψh)∈Wh

∥∥∥(u, B) − (vh,Ψh)
∥∥∥
h
≤ Ch(|u|2 + ‖B‖2). (5.25)

At the same time, for p ∈ L2
0(Ω), we define the interpolation Rh

0p ∈Mh on each element K as
∫

K

(
p − Rh

0p
)
dx = 0. (5.26)

Then there holds

inf
sh∈Mh

∥∥∥p − sh
∥∥∥
0
≤
∥∥∥p − Rh

0p
∥∥∥
0
≤ Ch∥∥p∥∥1. (5.27)

On the other hand, by the similar techniques to [25–27, 29, 30, 32], we have
∣∣∣E
((
vh,Ψh

))∣∣∣ ≤ Ch(|u|2 +
∥∥p∥∥1

)∥∥∥(vh,Ψh)
∥∥∥
h
. (5.28)

Substituting (5.24)–(5.28) into (5.2) and (5.3) yields the desired result.
Next, wewill establish the error estimates in L2-norm for the velocity and themagnetic

fields by use of the duality argument introduced in [46].
We consider the following dual problem. Find (w,Φ) and s such that.

−M−2Δw +N−1[w · ∇u − u · ∇w] +∇s + R−1
m (∇ ×Φ) × B = u − uh, in Ω,

R−2
m [∇ × (∇ ×Φ) − ∇(∇ ·Φ)] + R−1

m [(∇ × B) ×w − (∇ ×Φ) × u − ∇ × (B ×w)]

= B − Bh, in Ω,

∇ ·w = 0, in Ω,

w = 0, on ∂Ω,

B · n = 0, R−1
m (∇ ×Φ) × n +w × B × n = 0, on ∂Ω.

(5.29)

The variational formulation of (5.29) is written as follows.
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Problem (I3). Find (w,Φ) ∈W(Ω) and s ∈ L2
0(Ω) such that for all (v,Ψ) ∈W(Ω), ψ ∈ L2

0(Ω)

a0((v,Ψ), (w,Φ)) + a1((u, B), (v,Ψ), (w,Φ)) + a1((v,Ψ), (u, B), (w,Φ)) + b((v,Ψ), s)

=
(
(u, B) −

(
uh, Bh

)
, (v,Ψ)

)
,

b
(
(w,Φ), ψ

)
= 0.

(5.30)

Under the same hypotheses as Theorem 2.1, we may easily know that Problem (I3) has a
unique solution ((w,Φ), s) ∈W(Ω) × L2

0(Ω).
We require that (5.29) beH2-regular, that is:

‖(w,Φ)‖2 + ‖s‖1 ≤ C
∥∥∥(u, B) − (uh, Bh)

∥∥∥
0
. (5.31)

Let ((wh,Φh), sh) ∈Wh ×Mh satisfy

∥∥∥(w,Φ) − (wh,Φh)
∥∥∥
h
+
∥∥∥s − sh

∥∥∥
0
≤ Ch(|w|2 + ‖Φ‖2 + ‖s‖1). (5.32)

Theorem 5.3. Under the hypothesis of Theorem 5.2, let ((w,Φ), s) be the solution of Problem (I3),
and assume that (5.31) holds. Then we have

∥∥∥(u, B) − (uh, Bh)
∥∥∥
0
≤ Ch2(|u|2 + ‖B‖2 +

∥∥p∥∥1

)
. (5.33)

Proof. By (5.31) and (5.32), we deduce that

∥∥∥(w,Φ) −
(
wh,Φh

)∥∥∥
h
+
∥∥∥s − sh

∥∥∥
0
≤ Ch

∥∥∥(u, B) − (uh, Bh)
∥∥∥
0
. (5.34)

Multiplying (u − uh) and (B − Bh) both sides of the first and the second equation of (5.29),
respectively, and integrating by parts on each element, we see that

∥∥∥(u, B) − (uh, Bh)
∥∥∥
2

0
= a0h

(
(u, B) −

(
uh, Bh

)
, (w,Φ)

)
+ a1h

(
(u, B), (u, B) −

(
uh, Bh

)
, (w,Φ)

)

+ a1h
(
(u, B) −

(
uh, Bh

)
, (u, B), (w,Φ)

)
+ bh

(
(u, B) −

(
uh, Bh

)
, s
)

− (2N)−1
∑
K∈Γh

∫

K

div
(
u − uh

)
(u ·w)dx + F

((
u − uh

))
,

(5.35)
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where

F
((
u − uh

))
= −M−2 ∑

K∈Γh

∫

∂K

∂w

∂n

(
u − uh

)
ds − (2N)−1

∑
K∈Γh

∫

∂K

(u · n)
(
w ·

(
u − uh

))
ds

+ (2N)−1
∑
K∈Γh

∫

∂K

((
u − uh

)
· n
)
(u ·w)ds +

∑
K∈Γh

∫

∂K

s
(
u − uh

)
· nds.

(5.36)

Subtraction of (5.9) yields

a0h
(
(u, B) −

(
uh, Bh

)
,
(
vh,Ψh

))
+ a1h

(
(u, B) −

(
uh, Bh

)
, (u, B),

(
vh,Ψh

))

+ a1h
((
uh, Bh

)
, (u, B) −

(
uh, Bh

)
,
(
vh,Ψh

))
+ bh

((
vh,Ψh

)
, p − ph

)

= E
((
vh,Ψh

))
.

(5.37)

Note that

bh
(
(u, B) −

(
uh, Bh

)
, φh

)
= 0, ∀φh ∈Mh. (5.38)

Now, setting ψ = p − ph in Problem (I3), we have

b
(
(w,Φ), p − ph

)
= 0. (5.39)

From (5.35)–(5.39), we get

∥∥∥(u, B) −
(
uh, Bh

)∥∥∥
2

0

= a0h
(
(u, B) −

(
uh, Bh

)
, (w,Φ) −

(
vh,Ψh

))
+ bh

(
(u, B) −

(
uh, Bh

)
, s − φh

)

+ bh
(
(w,Φ) −

(
vh,Ψh

)
, p − ph

)
+A1 +A2 +A3,

(5.40)

where

A1 = a1h
((
uh, Bh

)
, (u, B) −

(
uh,Bh

)
, (w,Φ) −

(
vh,Ψh

))

+ a1h
(
(u, B) −

(
uh, Bh

)
, (u, B), (w,Φ) −

(
vh,Ψh

))

+ a1h
(
(u, B) −

(
uh, Bh

)
, (u, B) −

(
uh, Bh

)
, (w,Φ)

)
,

A2 = F
((
u − uh

))
+ E

((
vh,Ψh

))
,

A3 = − 1
2N

∑
K∈Γh

∫

K

div
(
u − uh

)
(u ·w)dx

(5.41)
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By (2.8), Lemma 4.4, and Theorem 4.6, we find

A1 ≤ C
(∥∥∥(u, B) −

(
uh, Bh

)∥∥∥
h

∥∥∥(w,Φ) −
(
vh,Ψh

)∥∥∥
h
+
∥∥∥(u, B) −

(
uh, Bh

)∥∥∥
2

h
‖(w,Φ)‖W

)
.

(5.42)

From [45], we know

F
((
u − uh

))
≤ Ch(|w|2 + ‖s‖1)

∥∥∥u − uh
∥∥∥
1h
. (5.43)

By virtue of u,w ∈ H2(Ω)3 ↪→ C0(Ω)2, we obtain

E
((
vh,Ψh

))

=
∑
K∈Γh

∫

∂K

[
M−2 ∂u

∂n

(
vh −w

)
− p

(
vh −w

)
· n − (2N)−1(u · n)

(
u ·

(
vh −w

))]
ds

≤ Ch(|u|2 +
∥∥p∥∥1

)∥∥∥vh −w
∥∥∥
1h
.

(5.44)

Let aK be a constant such that

‖u ·w − aK‖0,K ≤ Ch‖u ·w‖1,K ≤ Ch‖u‖1,K‖w‖2,K. (5.45)

Since div u = 0, bh((uh, Bh), q) = 0, ∀q ∈Mh and (5.45), we obtain

|A3| =
∣∣∣∣∣−

1
2N

∑
K∈Γh

∫

K

div
(
u − uh

)
(u ·w − aK)dx

∣∣∣∣∣

≤ Ch
∥∥∥u − uh

∥∥∥
1h
‖u‖1‖w‖2.

(5.46)

Thus, by (5.31) and the approximation theory, there hold

inf
(vh,Ψh)∈Wh

∥∥∥(w,Φ) − (vh,Ψh)
∥∥∥
h
≤ Ch‖(w,Φ)‖2 ≤ Ch

∥∥∥(u, B) − (uh, Bh)
∥∥∥
0
,

inf
vh∈X2h

∥∥∥w − vh
∥∥∥
1h

≤ Ch‖w‖2 ≤ Ch
∥∥∥(u, B) − (uh, Bh)

∥∥∥
0
,

inf
φh∈Mh

∥∥∥s − φh
∥∥∥
0
≤ Ch‖s‖1 ≤ Ch

∥∥∥(u, B) − (uh, Bh)
∥∥∥
0
,

‖(w,Φ)‖W ≤ ‖(w,Φ)‖2 ≤ C
∥∥∥(u, B) − (uh, Bh)

∥∥∥
0
,

∣∣∣bh
(
(u, B) −

(
uh, Bh

)
, s − φh

)∣∣∣ ≤ C
∥∥∥(u, B) −

(
uh, Bh

)∥∥∥
h

∥∥∥s − φh
∥∥∥
0
,

∣∣∣bh
(
(w,Φ) −

(
vh,Ψh

)
, p − ph

)∣∣∣ ≤ C
∥∥∥(u, B) −

(
uh, Bh

)∥∥∥
h

∥∥∥s − φh
∥∥∥
0
.

(5.47)
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Combining these inequalities and using Lemma 4.4 and the results from (5.39) to (5.46) yields
the desired result.

Remark 5.4. The results obtained in this paper are also valid to the MHD equations with the
following boundary conditions u = 0, n × B = 0, (∇ × B) · n = 0 on ∂Ω when u ∈ H1

0(Ω)3, B ∈
H = {B ∈ H1(Ω)3; (B × n)|∂Ω = 0}.
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[18] U. Hasler, A. Schneebeli, and D. Schötzau, “Mixed finite element approximation of incompressible
MHD problems based on weighted regularization,” Applied Numerical Mathematics, vol. 51, no. 1, pp.
19–45, 2004.
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