Open Access
2012 Exact Traveling Wave Solutions of Explicit Type, Implicit Type, and Parametric Type for K ( m , n ) Equation
Xianbin Wu, Weiguo Rui, Xiaochun Hong
J. Appl. Math. 2012: 1-23 (2012). DOI: 10.1155/2012/236875

Abstract

By using the integral bifurcation method, we study the nonlinear K ( m , n ) equation for all possible values of m and n . Some new exact traveling wave solutions of explicit type, implicit type, and parametric type are obtained. These exact solutions include peculiar compacton solutions, singular periodic wave solutions, compacton-like periodic wave solutions, periodic blowup solutions, smooth soliton solutions, and kink and antikink wave solutions. The great parts of them are different from the results in existing references. In order to show their dynamic profiles intuitively, the solutions of K ( n , n ) , K ( 2 n 1 , n ) , K ( 3 n 2 , n ) , K ( 4 n 3 , n ) , and K ( m , 1 ) equations are chosen to illustrate with the concrete features.

Citation

Download Citation

Xianbin Wu. Weiguo Rui. Xiaochun Hong. "Exact Traveling Wave Solutions of Explicit Type, Implicit Type, and Parametric Type for K ( m , n ) Equation." J. Appl. Math. 2012 1 - 23, 2012. https://doi.org/10.1155/2012/236875

Information

Published: 2012
First available in Project Euclid: 14 December 2012

zbMATH: 1251.35138
MathSciNet: MR2904530
Digital Object Identifier: 10.1155/2012/236875

Rights: Copyright © 2012 Hindawi

Vol.2012 • 2012
Back to Top