Open Access
Translator Disclaimer
2012 Comparison of Algebraic Multigrid Preconditioners for Solving Helmholtz Equations
Dandan Chen, Ting-Zhu Huang, Liang Li
J. Appl. Math. 2012(SI12): 1-12 (2012). DOI: 10.1155/2012/367909


An algebraic multigrid (AMG) with aggregation technique to coarsen is applied to construct a better preconditioner for solving Helmholtz equations in this paper. The solution process consists of constructing the preconditioner by AMG and solving the preconditioned Helmholtz problems by Krylov subspace methods. In the setup process of AMG, we employ the double pairwise aggregation (DPA) scheme firstly proposed by Y. Notay (2006) as the coarsening method. We compare it with the smoothed aggregation algebraic multigrid and meanwhile show shifted Laplacian preconditioners. According to numerical results, we find that DPA algorithm is a good choice in AMG for Helmholtz equations in reducing time and memory. Spectral estimation of system preconditioned by the three methods and the influence of second-order and fourth-order accurate discretizations on the three techniques are also considered.


Download Citation

Dandan Chen. Ting-Zhu Huang. Liang Li. "Comparison of Algebraic Multigrid Preconditioners for Solving Helmholtz Equations." J. Appl. Math. 2012 (SI12) 1 - 12, 2012.


Published: 2012
First available in Project Euclid: 3 January 2013

zbMATH: 1244.65044
MathSciNet: MR2910911
Digital Object Identifier: 10.1155/2012/367909

Rights: Copyright © 2012 Hindawi


Vol.2012 • No. SI12 • 2012
Back to Top