Translator Disclaimer
2012 A Class of Three-Step Derivative-Free Root Solvers with Optimal Convergence Order
F. Soleymani, S. Karimi Vanani, M. Jamali Paghaleh
J. Appl. Math. 2012(SI03): 1-15 (2012). DOI: 10.1155/2012/568740

Abstract

A class of three-step eighth-order root solvers is constructed in this study. Our aim is fulfilled by using an interpolatory rational function in the third step of a three-step cycle. Each method of the class reaches the optimal efficiency index according to the Kung-Traub conjecture concerning multipoint iterative methods without memory. Moreover, the class is free from derivative calculation per full iteration, which is important in engineering problems. One method of the class is established analytically. To test the derived methods from the class, we apply them to a lot of nonlinear scalar equations. Numerical examples suggest that the novel class of derivative-free methods is better than the existing methods of the same type in the literature.

Citation

Download Citation

F. Soleymani. S. Karimi Vanani. M. Jamali Paghaleh. "A Class of Three-Step Derivative-Free Root Solvers with Optimal Convergence Order." J. Appl. Math. 2012 (SI03) 1 - 15, 2012. https://doi.org/10.1155/2012/568740

Information

Published: 2012
First available in Project Euclid: 3 January 2013

zbMATH: 1235.65047
MathSciNet: MR2889100
Digital Object Identifier: 10.1155/2012/568740

Rights: Copyright © 2012 Hindawi

JOURNAL ARTICLE
15 PAGES


SHARE
Vol.2012 • No. SI03 • 2012
Back to Top