Open Access
Fall 2014 A non-commutative Wiener–Wintner theorem
Semyon Litvinov
Illinois J. Math. 58(3): 697-708 (Fall 2014). DOI: 10.1215/ijm/1441790385

Abstract

For a von Neumann algebra $\mathcal{M}$ with a faithful normal tracial state $\tau$ and a positive ergodic homomorpsism $\alpha :\mathcal{L}^{1}(\mathcal{M},\tau)\to\mathcal{L}^{1}(\mathcal{M},\tau)$ such that $\tau\circ\alpha =\tau$ and $\alpha $ does not increase the norm in $\mathcal{M}$, we establish a non-commutative counterpart of the classical Wiener–Wintner ergodic theorem.

Citation

Download Citation

Semyon Litvinov. "A non-commutative Wiener–Wintner theorem." Illinois J. Math. 58 (3) 697 - 708, Fall 2014. https://doi.org/10.1215/ijm/1441790385

Information

Received: 3 February 2014; Revised: 21 May 2015; Published: Fall 2014
First available in Project Euclid: 9 September 2015

zbMATH: 1325.47022
MathSciNet: MR3395958
Digital Object Identifier: 10.1215/ijm/1441790385

Subjects:
Primary: 47A35
Secondary: 46L51

Rights: Copyright © 2014 University of Illinois at Urbana-Champaign

Vol.58 • No. 3 • Fall 2014
Back to Top