Abstract
For a von Neumann algebra $\mathcal{M}$ with a faithful normal tracial state $\tau$ and a positive ergodic homomorpsism $\alpha :\mathcal{L}^{1}(\mathcal{M},\tau)\to\mathcal{L}^{1}(\mathcal{M},\tau)$ such that $\tau\circ\alpha =\tau$ and $\alpha $ does not increase the norm in $\mathcal{M}$, we establish a non-commutative counterpart of the classical Wiener–Wintner ergodic theorem.
Citation
Semyon Litvinov. "A non-commutative Wiener–Wintner theorem." Illinois J. Math. 58 (3) 697 - 708, Fall 2014. https://doi.org/10.1215/ijm/1441790385
Information