A NON-COMMUTATIVE WIENER-WINTNER THEOREM

SEMYON LITVINOV

Abstract

For a von Neumann algebra \mathcal{M} with a faithful normal tracial state τ and a positive ergodic homomorpsism $\alpha: \mathcal{L}^{1}(\mathcal{M}, \tau) \rightarrow \mathcal{L}^{1}(\mathcal{M}, \tau)$ such that $\tau \circ \alpha=\tau$ and α does not increase the norm in \mathcal{M}, we establish a non-commutative counterpart of the classical Wiener-Wintner ergodic theorem.

1. Introduction and preliminaries

The celebrated Wiener-Wintner theorem [12] is by far one of the most deep and fruitful results of the classical ergodic theory. It may be stated as follows.

ThEOREM 1.1. Let (Ω, μ) be a probability space, and let $T: \Omega \rightarrow \Omega$ be an ergodic measure preserving transformation. Then for any function $f \in L^{1}(\Omega, \mu)$ there exists a set Ω_{f} of full measure such that, given $\omega \in \Omega_{f}$, the averages

$$
a_{n}(f, \lambda)(\omega)=\frac{1}{n} \sum_{k=0}^{n-1} \lambda^{k} f\left(T^{k} \omega\right)
$$

converge for all $\lambda \in \mathbb{C}$ with $|\lambda|=1$.
The aim of this article is to establish a non-commutative extension of Theorem 1.1. We follow the path of "simple inequality" as it is outlined in [1]. This means that our argument relies on a non-commutative Van der Corput's inequality. Note that such an inequality was established in [10].

Let H be a Hilbert space, $B(H)$ the algebra of all bounded linear operators in $H,\|\cdot\|_{\infty}$ the uniform norm in $B(H)$, \mathbb{I} the unit of $B(H)$. Let $\mathcal{M} \subset B(H)$ be a semifinite von Neumann algebra with a faithful normal semifinite trace τ. We denote by $P(\mathcal{M})$ the complete lattice of all projections in \mathcal{M} and set $e^{\perp}=\mathbb{I}-e$ whenever $e \in P(\mathcal{M})$.

A densely-defined closed operator x in H is said to be affiliated with the algebra \mathcal{M} if $x^{\prime} x \subset x x^{\prime}$ for every $x^{\prime} \in B(H)$ such that $x^{\prime} x=x x^{\prime}$ for all $x \in \mathcal{M}$. An operator x affiliated with \mathcal{M} is called τ-measurable if for each $\varepsilon>0$ there exists such $e \in P(\mathcal{M})$ with $\tau\left(e^{\perp}\right) \leq \varepsilon$ that the subspace $e H$ belongs to the domain of x. (In this case $x e \in \mathcal{M}$.) Let $\mathcal{L}=\mathcal{L}(\mathcal{M}, \tau)$ be the set of all τ measurable operators affiliated with the algebra \mathcal{M}. The topology t_{τ} defined in \mathcal{L} by the family

$$
\begin{aligned}
& V(\varepsilon, \delta)=\left\{x \in \mathcal{L}:\|x e\|_{\infty} \leq \delta \text { for some } e \in P(\mathcal{M}) \text { with } \tau\left(e^{\perp}\right) \leq \varepsilon\right\} \\
& \quad \varepsilon>0, \delta>0
\end{aligned}
$$

of (closed) neighborhoods of zero is called a measure topology.
Theorem 1.2 ([11]; see also [9]). $\left(\mathcal{L}, t_{\tau}\right)$ is a complete metrizable topological *-algebra.

For a positive self-adjoint operator $x=\int_{0}^{\infty} \lambda d e_{\lambda}$ affiliated with \mathcal{M}, one can define

$$
\tau(x)=\sup _{n} \tau\left(\int_{0}^{n} \lambda d e_{\lambda}\right)=\int_{0}^{\infty} \lambda d \tau\left(e_{\lambda}\right) .
$$

If $1 \leq p<\infty$, then the non-commutative L^{p}-space associated with (\mathcal{M}, τ) is defined as

$$
\mathcal{L}^{p}=\mathcal{L}^{p}(\mathcal{M}, \tau)=\left\{x \in \mathcal{L}:\|x\|_{p}=\left(\tau\left(|x|^{p}\right)\right)^{1 / p}<\infty\right\}
$$

where $|x|=\left(x^{*} x\right)^{1 / 2}$, the absolute value of x. Naturally, $\mathcal{L}^{\infty}=\mathcal{M}$.
Let $\alpha: \mathcal{L}^{1} \rightarrow \mathcal{L}^{1}$ be a positive linear map such that $\alpha(x) \leq \mathbb{I}$ and $\tau(\alpha(x)) \leq$ $\tau(x)$ for every $x \in \mathcal{L}^{1} \cap \mathcal{M}$ with $0 \leq x \leq \mathbb{I}$ (see [13]). Note that, as it is shown in [3, Proposition 1.1], such an α can be uniquely extended to a positive linear contraction on \mathcal{M}. Therefore, α satisfies the hypotheses of [5, Lemma 1.1] and as such can be uniquely extended to a positive linear contraction on \mathcal{L}^{p}, $1 \leq p<\infty$.

Let $\mathbb{C}_{1}=\{z \in \mathbb{C}:|z|=1\}$. If $1 \leq p \leq \infty, x \in \mathcal{L}^{p}, \lambda \in \mathbb{C}_{1}$, we denote

$$
\begin{align*}
a_{n}(x) & =\frac{1}{n} \sum_{k=0}^{n-1} \alpha^{k}(x), \tag{1}\\
a_{n}(x, \lambda) & =\frac{1}{n} \sum_{k=0}^{n-1} \lambda^{k} \alpha^{k}(x) . \tag{2}
\end{align*}
$$

There are several generally distinct types of "pointwise" (or "individual") convergence in \mathcal{L} each of which, in the commutative case with finite measure, reduces to the almost everywhere convergence. We deal with the socalled almost uniform (a.u.) and bilateral almost uniform (b.a.u.) convergences for which $x_{n} \rightarrow x$ a.u. (b.a.u.) means that for every $\varepsilon>0$ there exists such $e \in P(\mathcal{M})$ that $\tau\left(e^{\perp}\right) \leq \varepsilon$ and $\left\|\left(x-x_{n}\right) e\right\|_{\infty} \rightarrow 0\left(\left\|e\left(x-x_{n}\right) e\right\|_{\infty} \rightarrow 0\right.$, respectively). Clearly, a.u. convergence implies b.a.u. convergence.

In [13] the following non-commutative ergodic theorem was established.
Theorem 1.3. For every $x \in \mathcal{L}^{1}$, the ergodic averages (1) converge b.a.u. to some $\widehat{x} \in \mathcal{L}^{1}$.

REmark 1.1. B.a.u. convergence of the averages (2) for $x \in \mathcal{L}^{1}\left(\mathcal{L}^{p}, 1<\right.$ $p<\infty)$ and a fixed $\lambda \in \mathbb{C}_{1}$ was proved in [4] ([3], respectively).

2. Non-commutative Wiener-Wintner property

Now we turn our attention to a study of the "simultaneous" on \mathbb{C}_{1} individual convergence of the averages (2). We begin with the following definition [7].

Definition 2.1. Let $(X,\|\cdot\|)$ be a normed space. A sequence $a_{n}: X \rightarrow$ \mathcal{L} of additive maps is called bilaterally uniformly equicontinuous in measure (b.u.e.m.) at $0 \in X$ if for every $\varepsilon>0, \delta>0$ there exists $\gamma>0$ such that for every $x \in X$ with $\|x\|<\gamma$ there is $e_{x} \in P(\mathcal{M})$ for which

$$
\tau\left(e_{x}^{\perp}\right) \leq \varepsilon \quad \text { and } \quad \sup _{n}\left\|e_{x} a_{n}(x) e_{x}\right\|_{\infty} \leq \delta
$$

A proof of the next fact can be found in [7].
Proposition 2.1. For any $1 \leq p<\infty$, the sequence $\left\{a_{n}\right\}$ given by (1) is b.u.e.m. at $0 \in \mathcal{L}^{p}$.

Lemma 2.1. If $1 \leq p<\infty$, then, given $\varepsilon>0, \delta>0$, there exists $\gamma>0$ such that for every $x \in \mathcal{L}^{p}$ with $\|x\|_{p} \leq \gamma$ there is $e \in P(\mathcal{M})$ satisfying

$$
\tau\left(e^{\perp}\right) \leq \varepsilon \quad \text { and } \quad \sup _{n}\left\|e a_{n}(x, \lambda) e\right\|_{\infty} \leq \delta \quad \text { for all } \lambda \in \mathbb{C}_{1}
$$

Proof. Fix $\varepsilon>0, \delta>0$. By Proposition 2.1, there exists $\gamma>0$ such that for each $\|x\|_{p}<\gamma$ it is possible to find $e \in P(\mathcal{M})$ such that

$$
\tau\left(e^{\perp}\right) \leq \frac{\varepsilon}{4} \quad \text { and } \quad \sup _{n}\left\|e a_{n}(x) e\right\|_{\infty} \leq \frac{\delta}{24}
$$

Fix $x \in \mathcal{L}^{p}$ with $\|x\|_{p}<\gamma$. We have $x=\left(x_{1}-x_{2}\right)+i\left(x_{3}-x_{4}\right)$, where $x_{j} \in \mathcal{L}_{+}^{p}$ and $\left\|x_{j}\right\|_{p} \leq\|x\|_{p}$ for each $j=1,2,3,4$.

If $1 \leq j \leq 4$, then $\left\|x_{j}\right\|_{p}<\gamma$, so there is $e_{j} \in P(\mathcal{M})$ satisfying

$$
\tau\left(e_{j}^{\perp}\right) \leq \frac{\varepsilon}{4} \quad \text { and } \quad \sup _{n}\left\|e_{j} a_{n}\left(x_{j}\right) e_{j}\right\|_{\infty} \leq \frac{\delta}{24}
$$

Let $e=\bigwedge_{j=1}^{4} e_{j}$. Then we have

$$
\tau\left(e^{\perp}\right) \leq \varepsilon \quad \text { and } \quad \sup _{n}\left\|e a_{n}\left(x_{j}\right) e\right\|_{\infty} \leq \frac{\delta}{24}, \quad j=1,2,3,4
$$

Now, fix $\lambda \in \mathbb{C}_{1}$. For $1 \leq j \leq 4$ denote

$$
\begin{aligned}
& a_{n}^{(R)}\left(x_{j}, \lambda\right)=\frac{1}{n} \sum_{k=0}^{n-1} \operatorname{Re}\left(\lambda^{k}\right) \alpha^{k}\left(x_{j}\right)+a_{n}\left(x_{j}\right)=\frac{1}{n} \sum_{k=0}^{n-1}\left(\operatorname{Re}\left(\lambda^{k}\right)+1\right) \alpha^{k}\left(x_{j}\right) \\
& a_{n}^{(I)}\left(x_{j}, \lambda\right)=\frac{1}{n} \sum_{k=0}^{n-1} \operatorname{Im}\left(\lambda^{k}\right) \alpha^{k}\left(x_{j}\right)+a_{n}\left(x_{j}\right)=\frac{1}{n} \sum_{k=0}^{n-1}\left(\operatorname{Im}\left(\lambda^{k}\right)+1\right) \alpha^{k}\left(x_{j}\right)
\end{aligned}
$$

Then $0 \leq \operatorname{Re}\left(\lambda^{k}\right)+1 \leq 2$ and $\alpha^{k}\left(x_{j}\right) \geq 0$ for every k entail

$$
0 \leq e a_{n}^{(R)}\left(x_{j}, \lambda\right) e \leq 2 e a_{n}\left(x_{j}\right) e \quad \text { for all } n
$$

Therefore

$$
\sup _{n}\left\|e a_{n}^{(R)}\left(x_{j}, \lambda\right) e\right\|_{\infty} \leq \frac{\delta}{12}
$$

and, similarly,

$$
\sup _{n}\left\|e a_{n}^{(I)}\left(x_{j}, \lambda\right) e\right\|_{\infty} \leq \frac{\delta}{12}
$$

This implies that, given $1 \leq j \leq 4$, we have

$$
\begin{aligned}
& \sup _{n}\left\|e a_{n}\left(x_{j}, \lambda\right) e\right\|_{\infty} \\
& \quad=\sup _{n}\left\|e\left(a_{n}^{(R)}\left(x_{j}, \lambda\right)+i a_{n}^{(I)}\left(x_{j}, \lambda\right)-a_{n}\left(x_{j}\right)-i a_{n}\left(x_{j}\right)\right) e\right\|_{\infty} \leq \frac{\delta}{4},
\end{aligned}
$$

and we conclude that

$$
\begin{aligned}
& \sup _{n}\left\|e a_{n}(x, \lambda) e\right\|_{\infty} \\
& \quad=\sup _{n}\left\|e\left(a_{n}\left(x_{1}, \lambda\right)-a_{n}\left(x_{2}, \lambda\right)+i a_{n}\left(x_{3}, \lambda\right)-i a_{n}\left(x_{4}, \lambda\right)\right) e\right\|_{\infty} \leq \delta
\end{aligned}
$$

for every $\lambda \in \mathbb{C}_{1}$.
Definition 2.2. Let $1 \leq p<\infty$. We say that $x \in \mathcal{L}^{p}$ satisfies WienerWintner (bilaterally Wiener-Wintner) property and we write $x \in W W(x \in$ $b W W$, respectively) if, given $\varepsilon>0$, there exists a projection $e \in P(\mathcal{M})$ with $\tau\left(e^{\perp}\right) \leq \varepsilon$ such that the sequence
$\left\{a_{n}(x, \lambda) e\right\} \quad\left(\left\{e a_{n}(x, \lambda) e\right\}\right.$, respectively $)$ converges in \mathcal{M} for all $\lambda \in \mathbb{C}_{1}$.
Note that $W W \subset b W W$, while in the commutative case these sets coinside.
Let (Ω, μ) be a probability space, and let $T: \Omega \rightarrow \Omega$ be a measure preserving transformation. Then $f \in L^{1}(\Omega, \mu) \cap W W$ would imply that for every $m \in \mathbb{N}$ there exists Ω_{m} with $\mu\left(\Omega \backslash \Omega_{m}\right) \leq \frac{1}{m}$ such that the averages $a_{n}(f, \lambda)(\omega)=$ $\frac{1}{n} \sum_{k=0}^{n-1} \lambda^{k} f\left(T^{k} \omega\right)$ converge for all $\omega \in \Omega_{m}$ and $\lambda \in \mathbb{C}_{1}$. Then, with $\Omega_{f}=$ $\bigcup_{m=1}^{\infty} \Omega_{m}$, we have $\mu\left(\Omega_{f}\right)=1$, while the averages $a_{n}(f, \lambda)(\omega)$ converge for all $\omega \in \Omega_{f}$ and $\lambda \in \mathbb{C}_{1}$.

Therefore Definition 2.2 presents a proper generalization of the classical Wiener-Wintner property; see [1, p. 28]. In an attempt to clarify what happens in the non-commutative situation without imposing any additional conditions on τ and α, we suggest the following.

Proposition 2.2. Let $1 \leq p<\infty$ and $x \in \mathcal{L}^{p} \cap W W\left(x \in \mathcal{L}^{p} \cap b W W\right)$. Then
(1) for every $\lambda \in \mathbb{C}_{1}$ there is such $x_{\lambda} \in \mathcal{L}^{p}$ that

$$
a_{n}(x, \lambda) \rightarrow x_{\lambda} \quad \text { a.u. }\left(a_{n}(x, \lambda) \rightarrow x_{\lambda} \text { b.a.u., respectively }\right),
$$

(2) if $e \in P(\mathcal{M})$ is such that $\left\{a_{n}(x, \lambda) e\right\}\left(\left\{e a_{n}(x, \lambda) e\right\}\right)$ converges in \mathcal{M} for all $\lambda \in \mathbb{C}_{1}$, then, given $\lambda \in \mathbb{C}_{1}$ and $\nu>0$, there is a projection $e_{\lambda} \in P(\mathcal{M})$ such that $e_{\lambda} \leq p, \tau\left(e-e_{\lambda}\right) \leq \nu$, and
$\left\|\left(a_{n}(x, \lambda)-x_{\lambda}\right) e_{\lambda}\right\|_{\infty} \rightarrow 0 \quad\left(\left\|e_{\lambda}\left(a_{n}(x, \lambda)-x_{\lambda}\right) e_{\lambda}\right\|_{\infty} \rightarrow 0\right.$, respectively $)$.
Proof. We will provide a proof for the b.a.u. convergence. Same argument is applicable in the case of a.u. convergence.
(1) Let $x \in \mathcal{L}^{p} \cap b W W$ and $\lambda \in \mathbb{C}_{1}$. Then for every $\varepsilon>0$ there exists $e \in P(\mathcal{M})$ with $\tau\left(e^{\perp}\right) \leq \varepsilon$ for which

$$
\left\|e\left(a_{m}(x, \lambda)-a_{n}(x, \lambda)\right) e\right\|_{\infty} \rightarrow 0 \quad \text { as } m, n \rightarrow \infty
$$

Then, as it is noticed in [2, Proposition 1.3], $a_{n}(x, \lambda) \rightarrow x_{\lambda}$ b.a.u. for some $x_{\lambda} \in$ \mathcal{L}, which clearly implies that $a_{n}(x, \lambda) \rightarrow x_{\lambda}$ bilaterally in measure, meaning that, given $\varepsilon>0, \delta>0$, there exists $N \in \mathbb{N}$ such that for every $n \geq \mathbb{N}$ there is $e_{n} \in P(\mathcal{M})$ with $\tau\left(e_{n}^{\perp}\right) \leq \varepsilon$ satisfying $\left\|e_{n}\left(a_{n}(x, \lambda)-x_{\lambda}\right) e_{n}\right\|_{\infty} \leq \delta$. Since the measure topology coincides with the bilateral measure topology on \mathcal{L} (see [4, Theorem 2.2]), $a_{n}(x, \lambda) \rightarrow x_{\lambda}$ in measure. Then, as $\left\|a_{n}(x, \lambda)\right\|_{p} \leq\|x\|_{p}$ for all n, [4, Theorem 1.2] implies that $x_{\lambda} \in \mathcal{L}^{p}$.
(2) Let $e \in P(\mathcal{M})$ be such that the sequence $\left\{e a_{n}(x, \lambda) e\right\}$ converges in \mathcal{M} for all $\lambda \in \mathbb{C}_{1}$. By part (1), given $\lambda \in \mathbb{C}_{1}$ and $\nu>0$, there is $f_{\lambda} \in P(\mathcal{M})$ with $\tau\left(f_{\lambda}^{\perp}\right) \leq \nu$ such that $\left\|f_{\lambda}\left(a_{n}(x, \lambda)-x_{\lambda}\right) f_{\lambda}\right\|_{\infty} \rightarrow 0$ as $n \rightarrow \infty$. Then $e_{\lambda}=e \wedge f_{\lambda}$ satisfies the required conditions.

Remark 2.1. It is desirable to have the following: if $x \in W W(x \in$ $b W W)$, then, given $\varepsilon>0$, there exists such $e \in P(\mathcal{M})$ with $\tau\left(e^{\perp}\right) \leq \varepsilon$ that $\left\|\left(a_{n}(x, \lambda)-x_{\lambda}\right) e\right\|_{\infty} \rightarrow 0\left(\left\|e\left(a_{n}(x, \lambda)-x_{\lambda}\right) e\right\|_{\infty} \rightarrow 0\right.$, respectively) for all $\lambda \in \mathbb{C}_{1}$; see Remark 5.1 below.

Theorem 2.1. For each $1 \leq p<\infty$ the set $X=\mathcal{L}^{p} \cap b W W$ is closed in \mathcal{L}^{p}.
Proof. Take x in the $\|\cdot\|_{p}$-closure of X and fix $\varepsilon>0$. By Lemma 2.1, one can find sequences $\left\{x_{m}\right\} \subset X$ and $\left\{f_{m}\right\} \subset P(\mathcal{M})$ in such a way that

$$
\tau\left(f_{m}^{\perp}\right) \leq \frac{\varepsilon}{3 \cdot 2^{m}} \quad \text { and } \quad \sup _{n}\left\|f_{m} a_{n}\left(x-x_{m}, \lambda\right) f_{m}\right\|_{\infty} \leq \frac{1}{m}
$$

for all $m \in \mathbb{N}$ and $\lambda \in \mathbb{C}_{1}$. If we let $f=\bigwedge_{m=1}^{\infty} f_{m}$, then

$$
\tau\left(f^{\perp}\right) \leq \frac{\varepsilon}{3} \quad \text { and } \quad \sup _{n}\left\|f a_{n}\left(x-x_{m}, \lambda\right) f\right\|_{\infty} \leq \frac{1}{m}
$$

$m \in \mathbb{N}, \lambda \in \mathbb{C}_{1}$. Also, since $\left\{x_{m}\right\} \subset b W W$, one can construct $g \in P(\mathcal{M})$ such that

$$
\tau\left(g^{\perp}\right) \leq \frac{\varepsilon}{3} \quad \text { and } \quad\left\{g a_{n}\left(x_{m}, \lambda\right) g\right\} \quad \text { converges in } \mathcal{M} \text { for all } m \in \mathbb{N}, \lambda \in \mathbb{C}_{1}
$$

Next, there exists $h \in P(\mathcal{M})$ with $\tau\left(h^{\perp}\right) \leq \frac{\varepsilon}{3}$ for which $\left\{\alpha^{k}(x) h\right\}_{k=0}^{\infty} \subset \mathcal{M}$ so that $\left\{h a_{n}(x, \lambda) h\right\} \subset \mathcal{M}$ for all $\lambda \in \mathbb{C}_{1}$. Now, if $e=f \wedge g \wedge h$, then we have $\tau\left(e^{\perp}\right) \leq \varepsilon$,

$$
\begin{aligned}
& \sup _{n}\left\|e a_{n}\left(x-x_{m}, \lambda\right) e\right\|_{\infty} \leq \frac{1}{m} \\
& \left\{e a_{n}\left(x_{m}, \lambda\right) e\right\} \quad \text { converges in } \mathcal{M}, \quad \text { and } \quad\left\{e a_{n}(x, \lambda) e\right\} \subset \mathcal{M}
\end{aligned}
$$

for all $m \in \mathbb{N}$ and $\lambda \in \mathbb{C}_{1}$.
It remains to show that, for a fixed $\lambda \in \mathbb{C}_{1}$, the sequence $\left\{e a_{n}(x, \lambda) e\right\}$ converges in \mathcal{M}. So, fix $\delta>0$ and pick m_{0} such that $\frac{1}{m_{0}} \leq \frac{\delta}{3}$. Since the sequence $\left\{e a_{n}\left(x_{m_{0}}, \lambda\right) e\right\}$ converges in \mathcal{M}, there exists N such that

$$
\left\|e\left(a_{n_{1}}\left(x_{m_{0}}, \lambda\right)-a_{n_{2}}\left(x_{m_{0}}, \lambda\right)\right) e\right\|_{\infty} \leq \frac{\delta}{3}
$$

whenever $n_{1}, n_{2} \geq N$. Therefore, given $n_{1}, n_{2} \geq N$, we can write

$$
\begin{aligned}
& \left\|e\left(a_{n_{1}}(x, \lambda)-a_{n_{2}}(x, \lambda)\right) e\right\|_{\infty} \\
& \quad \leq\left\|e a_{n_{1}}\left(x-x_{m_{0}}, \lambda\right) e\right\|_{\infty}+\left\|e a_{n_{2}}\left(x-x_{m_{0}}, \lambda\right) e\right\|_{\infty} \\
& \quad+\left\|e\left(a_{n_{1}}\left(x_{m_{0}}, \lambda\right)-a_{n_{2}}\left(x_{m_{0}}, \lambda\right)\right) e\right\|_{\infty}
\end{aligned}
$$

$$
\leq \delta
$$

This implies that the sequence $\left\{e a_{n}(x, \lambda) e\right\}$ converges in \mathcal{M} for all $\lambda \in \mathbb{C}_{1}$, hence $x \in X$ and X is closed in \mathcal{L}^{p}.

Let \mathcal{K} be the $\|\cdot\|_{2}$-closure of the linear span of the set

$$
\begin{equation*}
E=\left\{x \in \mathcal{L}^{2}: \alpha(x)=\mu x \text { for some } \mu \in \mathbb{C}_{1}\right\} \tag{3}
\end{equation*}
$$

Proposition 2.3. $\mathcal{K} \subset b W W$.
Proof. By Theorem 2.1, it is sufficient to show that $\sum_{j=1}^{m} a_{j} x_{j} \in b W W$ whenever $a_{j} \in \mathbb{C}$ and $x_{j} \in E, 1 \leq j \leq m$. For this, one will verify that $E \subset$ $W W$.

If $x \in E$, then $\alpha(x)=\mu x, \mu \in \mathbb{C}_{1}$. Fix $\varepsilon>0$ and find $e \in P(\mathcal{M})$ with $\tau\left(e^{\perp}\right) \leq \varepsilon$ such that $x e \in \mathcal{M}$. Then, given $\lambda \in \mathbb{C}_{1}$, we have

$$
a_{n}(x, \lambda)=x e \frac{1}{n} \sum_{k=0}^{n-1}(\lambda \mu)^{k} .
$$

Therefore, since the averages $\frac{1}{n} \sum_{k=0}^{n-1}(\lambda \mu)^{k}$ converge, we conclude that the sequence $\left\{a_{n}(x, \lambda) e\right\}$ converges in \mathcal{M}, whence $x \in W W$.

3. Spectral characterization of \mathcal{K}^{\perp}

The space \mathcal{L}^{2} equipped with the inner product $(x, y)_{\tau}=\tau\left(x^{*} y\right)$ is a Hilbert space such that $\|x\|_{2}=\|x\|_{\tau}=(x, x)_{\tau}^{1 / 2}, x \in \mathcal{L}^{2}$.

From now on we shall assume that τ and α satisfy the following additional conditions: τ is a state, α is a homomorphism, and $\tau \circ \alpha=\tau$. Notice that then $\|\alpha(x)\|_{2}=\|x\|_{2}$ and $|\tau(x)| \leq\|x\|_{2}$ for every $x \in \mathcal{L}^{2}$.

Proposition 3.1. If $x \in \mathcal{L}^{2}$, then the sequence $\left\{\gamma_{x}(l)\right\}_{-\infty}^{\infty}$ given by

$$
\gamma_{x}(l)= \begin{cases}\tau\left(x^{*} \alpha^{l}(x)\right), & \text { if } l \geq 0, \\ \tau\left(x^{*} \alpha^{-l}(x)\right), & \text { if } l<0\end{cases}
$$

is positive definite.
Proof. If $\mu_{0}, \ldots, \mu_{m} \in \mathbb{C}$, then, taking into account that positivity of α implies that $\alpha(y)^{*}=\alpha\left(y^{*}\right), y \in \mathcal{L}^{2}$, we have

$$
\begin{aligned}
0 & \leq\left\|\sum_{k=0}^{m} \mu_{k} \alpha^{k}(x)\right\|_{2}^{2}=\left(\sum_{j=0}^{m} \mu_{j} \alpha^{j}(x), \sum_{i=0}^{m} \mu_{i} \alpha^{i}(x)\right)_{\tau} \\
& =\sum_{i, j=0}^{m} \mu_{i} \bar{\mu}_{j} \tau\left(\alpha^{j}\left(x^{*}\right) \alpha^{i}(x)\right) .
\end{aligned}
$$

If $i \geq j$, we can write

$$
\tau\left(\alpha^{j}\left(x^{*}\right) \alpha^{i}(x)\right)=\tau\left(\alpha^{j}\left(x^{*} \alpha^{i-j}(x)\right)\right)=\tau\left(x^{*} \alpha^{i-j}(x)\right)=\gamma_{x}(i-j)
$$

and if $i<j$, we have

$$
\tau\left(\alpha^{j}\left(x^{*}\right) \alpha^{i}(x)\right)=\overline{\tau\left(\alpha^{i}\left(x^{*}\right) \alpha^{j}(x)\right)}=\overline{\tau\left(x^{*} \alpha^{j-i}(x)\right)}=\gamma_{x}(i-j) .
$$

Therefore

$$
\sum_{i, j=0}^{m} \gamma_{x}(i-j) \mu_{i} \bar{\mu}_{j} \geq 0
$$

for any $\mu_{0}, \ldots, \mu_{m} \in \mathbb{C}$, hence $\left\{\gamma_{x}(l)\right\}$ is positive definite.
Consequently, given $x \in \mathcal{L}^{2}$, by Herglotz-Bochner theorem, there exists a positive finite Borel measure σ_{x} on \mathbb{C}_{1} such that

$$
\begin{equation*}
\tau\left(x^{*} \alpha^{l}(x)\right)=\gamma_{x}(l)=\widehat{\sigma}_{x}(l)=\int_{\mathbb{C}_{1}} e^{2 \pi i l t} d \sigma_{x}(t), \quad l=1,2, \ldots \tag{4}
\end{equation*}
$$

Lemma 3.1. $\alpha\left(\mathcal{K}^{\perp}\right) \subset \mathcal{K}^{\perp}$.

Proof. Since $\alpha: \mathcal{L}^{2} \rightarrow \mathcal{L}^{2}$ is an isometry, we have $\|\alpha\|=1$. Therefore, $\left\|\alpha^{*}\right\|=1$ as well, so that $\left\|\alpha^{*}(x)\right\|_{2} \leq\|x\|_{2}, x \in \mathcal{L}^{2}$.

Let $x \in E$, that is, $x \in \mathcal{L}^{2}$ and $\alpha(x)=\mu x$ for some $\mu \in \mathbb{C}_{1}$. Then we have

$$
\left\|\alpha^{*}(x)-\bar{\mu} x\right\|_{2}^{2}=\left\|\alpha^{*}(x)\right\|_{2}^{2}-\bar{\mu}\left(\alpha^{*}(x), x\right)_{\tau}-\mu\left(x, \alpha^{*}(x)\right)_{\tau}+\|x\|_{2}^{2} \leq 0
$$

and it follows that $\alpha^{*}(x)=\bar{\mu} x$.
Now, if $y \in \mathcal{K}^{\perp}$, then $(\alpha(y), x)_{\tau}=\left(y, \alpha^{*}(x)\right)_{\tau}=\bar{\mu}(y, x)_{\tau}=0$, which implies that $\alpha(y) \perp E$, hence $\alpha(y) \in \mathcal{K}^{\perp}$.

Proposition 3.2. If $x \in \mathcal{K}^{\perp}$, then the measure σ_{x} is continuous.
Proof. We need to show that $\sigma_{x}(\{t\})=0$ for every $t \in \mathbb{C}_{1}$. It is known $[6$, p. 42] that

$$
\sigma_{x}(\{t\})=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{l=1}^{n} e^{2 \pi i l t} \widehat{\sigma}_{x}(t)
$$

which is equal to

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{l=1}^{n} e^{2 \pi i l t} \tau\left(x^{*} \alpha^{l}(x)\right)=\lim _{n \rightarrow \infty} \tau\left(x^{*}\left(\frac{1}{n} \sum_{l=1}^{n} e^{2 \pi i l t} \alpha^{l}(x)\right)\right) .
$$

Therefore, it is sufficient to verify that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\frac{1}{n} \sum_{l=1}^{n} e^{2 \pi i l t} \alpha^{l}(x)\right\|_{2}=0 . \tag{5}
\end{equation*}
$$

By the Mean Ergodic theorem applied to $\widetilde{\alpha}: \mathcal{L}^{2} \rightarrow \mathcal{L}^{2}$ given by $\widetilde{\alpha}(x)=$ $e^{2 \pi i t} \alpha(x)$, we conclude that

$$
\frac{1}{n} \sum_{l=1}^{n} e^{2 \pi i l t} \alpha^{l}(x) \rightarrow \bar{x} \quad \text { in } \mathcal{L}^{2}
$$

Since $x \in \mathcal{K}^{\perp}$, by Lemma 3.1, we have $\alpha^{l}(x) \in \mathcal{K}^{\perp}$ for each l, which implies that $\bar{x} \in \mathcal{K}^{\perp}$. Besides,

$$
\alpha(\bar{x})=\|\cdot\|_{2}-\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{l=1}^{n} e^{2 \pi i l t} \alpha^{l+1}(x)=e^{-2 \pi i t} \bar{x}
$$

so that $\bar{x} \in \mathcal{K}$. Therefore $\bar{x}=0$, and (5) follows.

4. Non-commutative Van der Corput's inequality

It was shown in [10] that the extremely useful Van der Corput's "Fundamental Inequality" (see [1]) can be fully extended to any *-algebra:

ThEOREM 4.1 ([10]). If $n \geq 1,0 \leq m \leq n-1$ are integers and a_{0}, \ldots, a_{n-1+m} are elements of $a *$-algebra such that $a_{n}=\cdots=a_{n-1+m}=0$, then

$$
\begin{aligned}
\left(\sum_{k=0}^{n-1} a_{k}^{*}\right)\left(\sum_{k=0}^{n-1} a_{k}\right) \leq & \frac{n-1+m}{m+1} \sum_{k=0}^{n-1} a_{k}^{*} a_{k} \\
& +\frac{2(n-1+m)}{m+1} \sum_{l=1}^{m} \frac{m-l+1}{m+1} \operatorname{Re} \sum_{k=0}^{n-1} a_{k}^{*} a_{k+l} .
\end{aligned}
$$

Corollary 4.1. If in Theorem 4.1, a_{0}, \ldots, a_{n-1+m} are elements of a C^{*} algebra with the norm $\|\cdot\|$, then
$\left\|\sum_{k=0}^{n-1} a_{k}\right\|^{2} \leq \frac{n-1+m}{m+1}\left\|\sum_{k=0}^{n-1} a_{k}^{*} a_{k}\right\|+\frac{2(n-1+m)}{m+1} \sum_{l=1}^{m} \frac{m-l+1}{m+1}\left\|\sum_{k=0}^{n-1} a_{k}^{*} a_{k+l}\right\|$,
which implies that

$$
\begin{aligned}
\left\|\frac{1}{n} \sum_{k=0}^{n-1} a_{k}\right\|^{2} \leq & \frac{n-1+m}{(m+1) n}\left\|\frac{1}{n} \sum_{k=0}^{n-1} a_{k}^{*} a_{k}\right\| \\
& +\frac{2(n-1+m)}{(m+1) n} \sum_{l=1}^{m} \frac{m-l+1}{m+1}\left\|\frac{1}{n} \sum_{k=0}^{n-1} a_{k}^{*} a_{k+l}\right\|
\end{aligned}
$$

and further

$$
\begin{equation*}
\left\|\frac{1}{n} \sum_{k=0}^{n-1} a_{k}\right\|^{2}<\frac{2}{m+1}\left\|\frac{1}{n} \sum_{k=0}^{n-1} a_{k}^{*} a_{k}\right\|+\frac{4}{m+1} \sum_{l=1}^{m}\left\|\frac{1}{n} \sum_{k=0}^{n-1} a_{k}^{*} a_{k+l}\right\| \tag{6}
\end{equation*}
$$

5. Proof of the main result

We will assume now that α is ergodic on \mathcal{L}^{2}, that is, $\alpha(x)=x, x \in \mathcal{L}^{2}$, implies that $x=c \cdot \mathbb{I}, c \in \mathbb{C}$.

Proposition 5.1. If $x \in \mathcal{L}^{2}$, then $a_{n}(x) \rightarrow \tau(x) \cdot \mathbb{I}$ a.u.
Proof. By the Mean Ergodic theorem, $a_{n}(x) \rightarrow \bar{x}$ in \mathcal{L}^{2}. Therefore, $\alpha\left(a_{n}(x)\right) \rightarrow \alpha(\bar{x})$ in \mathcal{L}^{2}, so $\alpha(\bar{x})=\bar{x}$, and the ergodicity of α implies that $\bar{x}=c(x) \cdot \mathbb{I}$. Then, since τ is also continuous in \mathcal{L}^{2}, we have $\tau\left(a_{n}(x)\right) \rightarrow$ $\tau(\bar{x})=c(x)$, hence $c(x)=\tau(x)$ because $\tau\left(a_{n}(x)\right)=\tau(x)$ for each n. It is known ([5], [7]) that $a_{n}(x) \rightarrow \widehat{x} \in \mathcal{L}^{2}$ a.u., which implies that $a_{n}(x) \rightarrow \widehat{x}$ in measure. Since $\|\cdot\|_{2}$-convergence entails convergence in measure, we conclude that $\widehat{x}=\bar{x}=\tau(x) \cdot \mathbb{I}$.

Lemma 5.1. If $a, b \in \mathcal{L}$ and $e \in P(\mathcal{M})$ are such that ae, be $\in \mathcal{M}$, then

$$
(a e)^{*} b e=e a^{*} b e
$$

Proof. We have

$$
\left((a e)^{*} b e\right)^{*}=(b e)^{*} a e \subset(b e)^{*}\left(e a^{*}\right)^{*} \subset\left(e a^{*} b e\right)^{*},
$$

which, since $\left((a e)^{*} b e\right)^{*} \in B(H)$, implies that $\left((a e)^{*} b e\right)^{*}=\left(e a^{*} b e\right)^{*}$, hence the required equality.

Now we can prove our main result, a non-commutative Wiener-Wintner theorem.

TheOrem 5.1. Let \mathcal{M} be a von Neumann algebra, τ a faithful normal tracial state on \mathcal{M}. Let $\alpha: \mathcal{L}^{1} \rightarrow \mathcal{L}^{1}$ be a positive ergodic homomorphism such that $\tau \circ \alpha=\tau$ and $\|\alpha(x)\|_{\infty} \leq\|x\|_{\infty}, x \in \mathcal{M}$. Then $\mathcal{L}^{1}=b W W$, that is, for every $x \in \mathcal{L}^{1}$ and $\varepsilon>0$ there exists such a projection $e \in P(\mathcal{M})$ that

$$
\tau\left(e^{\perp}\right) \leq \varepsilon \quad \text { and } \quad\left\{e a_{n}(x, \lambda) e\right\} \quad \text { converges in } \mathcal{M} \text { for all } \lambda \in \mathbb{C}_{1}
$$

Proof. Since \mathcal{L}^{2} is dense in $\mathcal{L}^{1}, \mathcal{L}^{2}=\mathcal{K} \oplus \mathcal{K}^{\perp}$, and $\mathcal{K} \subset b W W$ (Proposition 2.3), by Theorem 2.1, it remains to show that $\mathcal{K}^{\perp} \subset b W W$. (In fact, we will show that $\mathcal{K}^{\perp} \subset W W$.)

So, let $x \in \mathcal{K}^{\perp}$ and fix $\varepsilon>0$. Since $\left\{x^{*} \alpha^{l}(x)\right\}_{l=0}^{\infty} \subset \mathcal{L}^{2}$, due to Proposition 5.1, one can construct a projection $e \in P(\mathcal{M})$ in such a way that

$$
\begin{aligned}
& \tau\left(e^{\perp}\right) \leq \varepsilon, \quad\left\{\alpha^{k}(x) e\right\} \subset \mathcal{M} \quad \text { for all } k, \\
& e a_{n}\left(x^{*} x\right) e \rightarrow \tau\left(x^{*} x\right) e=\|x\|_{2} e \quad \text { in } \mathcal{M}, \quad \text { and } \\
& e a_{n}\left(x^{*} \alpha^{l}(x)\right) e \rightarrow \tau\left(x^{*} \alpha^{l}(x)\right) e=\widehat{\sigma}_{x}(l) e \quad \text { in } \mathcal{M} \text { for every } l .
\end{aligned}
$$

Now, if $a_{k}=\lambda^{k} \alpha^{k}(x) e, k=0,1,2, \ldots$, then, employing Lemma 5.1, we obtain

$$
a_{k}^{*} a_{k+l}=\lambda^{l} e \alpha^{k}\left(x^{*} \alpha^{l}(x)\right) e, \quad k, l=0,1,2, \ldots
$$

At this moment we apply inequality (6) to the sequence $\left\{a_{k}\right\} \subset \mathcal{M}$ yielding, in view of (1) and (2),

$$
\sup _{\lambda \in \mathbb{C}_{1}}\left\|a_{n}(x, \lambda) e\right\|_{\infty}^{2} \leq \frac{2}{m+1}\left\|e a_{n}\left(x^{*} x\right) e\right\|_{\infty}+\frac{4}{m+1} \sum_{l=1}^{m}\left\|e a_{n}\left(x^{*} \alpha^{l}(x)\right) e\right\|_{\infty}
$$

Therefore, for a fixed m, we have

$$
\limsup _{n} \sup _{\lambda \in \mathbb{C}_{1}}\left\|a_{n}(x, \lambda) e\right\|_{\infty}^{2} \leq \frac{2}{m+1}\|x\|_{2}^{2}+\frac{4}{m+1} \sum_{l=1}^{m}\left|\widehat{\sigma}_{x}(l)\right|
$$

Since the measure σ_{x} is continuous by Proposition 3.2, Wiener's criterion of continuity of positive finite Borel measure [6, p. 42] yields

$$
\lim _{m \rightarrow \infty} \frac{1}{m+1} \sum_{l=1}^{m}\left|\widehat{\sigma}_{x}(l)\right|^{2}=0
$$

which entails

$$
\lim _{m \rightarrow \infty} \frac{1}{m+1} \sum_{l=1}^{m}\left|\widehat{\sigma}_{x}(l)\right|=0
$$

Thus, we conclude that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{\lambda \in \mathbb{C}_{1}}\left\|a_{n}(x, \lambda) e\right\|_{\infty}=0 \tag{7}
\end{equation*}
$$

whence $x \in W W$.
Note that (7) can be referred to as non-commutative Bourgain's uniform Wiener-Wintner ergodic theorem.

Remark 5.1. As we have noticed (Proposition 2.2), for a fixed $\lambda \in \mathbb{C}_{1}$ and every $x \in \mathcal{L}^{1}$, the averages $a_{n}(x, \lambda)$ converge b.a.u. to some $x_{\lambda} \in \mathcal{L}^{1}$. It can be verified [8] that x_{λ} is a scalar multiple of \mathbb{I}. If we assume additionally that α is weakly mixing in \mathcal{L}^{2}, that is, 1 is its only eigenvalue there, then it is easy to see that the b.a.u. limit of $\left\{a_{n}(x, \lambda)\right\}$ with $x \in \mathcal{L}^{2}$ is zero unless $\lambda=1$. Since \mathcal{L}^{2} is dense in \mathcal{L}^{1}, one can employ an argument similar to that of Theorem 2.1 to show that $a_{n}(x, \lambda) \rightarrow 0$ b.a.u. for every $x \in \mathcal{L}^{1}$ if $\lambda \neq 1$. Therefore if α is weakly mixing, we can replace, in Theorem 5.1,

$$
\left\{e a_{n}(x, \lambda) e\right\} \quad \text { converges in } \mathcal{M} \text { for all } \lambda \in \mathbb{C}_{1}
$$

by

$$
\begin{aligned}
\left\|e a_{n}(x, \lambda) e\right\|_{\infty} \rightarrow 0 & \text { if } \lambda \neq 0 \quad \text { and } \\
\left\|e\left(a_{n}(x)-x_{1}\right) e\right\|_{\infty} \rightarrow 0 & \text { for some } x_{1} \in \mathcal{L}^{1}
\end{aligned}
$$

see Proposition 2.2 and Remark 2.1.

References

[1] I. Assani, Wiener Wintner ergodic theorems, World Scientific, River Edge, 2003. MR 1995517
[2] V. Chilin and S. Litvinov, Uniform equicontinuity for sequences of homomorphisms into the ring of measurable operators, Methods Funct. Anal. Topology 12 (2006), no. 2, 124-130. MR 2238034
[3] V. Chilin and S. Litvinov, Ergodic theorems in fully symmetric spaces of τ-measurable operators, 2015; available at arXiv:1410.1451v2.
[4] V. Chilin, S. Litvinov and A. Skalski, A few remarks in non-commutative ergodic theory, J. Operator Theory 53 (2005), no. 2, 331-350. MR 2153152
[5] M. Junge and Q. Xu, Noncommutative maximal ergodic theorems, J. Amer. Math. Soc. 20 (2007), no. 2, 385-439. MR 2276775
[6] Y. Katznelson, An introduction to harmonic analysis, Dover, New York, 1976. MR 0422992
[7] S. Litvinov, Uniform equicontinuity of sequences of measurable operators and noncommutative ergodic theorems, Proc. Amer. Math. Soc. 140 (2012), 2401-2409. MR 2898702
[8] S. Litvinov, Weighted ergodic theorems, Ph.D. thesis, North Dakota State University, 1999. MR 2699678
[9] E. Nelson, Notes on non-commutative integration, J. Funct. Anal. 15 (1974), 103-116. MR 0355628
[10] C. P. Niculescu, A. Ströh and L. Zsidó, Noncommutative extensions of classical and multiple recurrence theorems, J. Operator Theory 50 (2005), 3-52. MR 2015017
[11] I. Segal, A non-commutative extension of abstract integration, Ann. of Math. (2) 57 (1953), 401-457. MR 0054864
[12] N. Wiener and A. Wintner, Harmonic analysis and ergodic theory, Amer. J. Math. 63 (1941), no. 2, 415-426. MR 0004098
[13] F. J. Yeadon, Ergodic theorems for semifinite von Neumann algebras-I, J. Lond. Math. Soc. (2) 16 (1977), no. 2, 326-332. MR 0487482
Semyon Litvinov, Department of Mathematics, Pennsylvania State University, Hazleton, PA 18202, USA

E-mail address: snl2@psu.edu

