A NON-COMMUTATIVE WIENER–WINTNER THEOREM

SEMYON LITVINOV

ABSTRACT. For a von Neumann algebra \mathcal{M} with a faithful normal tracial state τ and a positive ergodic homomorpsism $\alpha : \mathcal{L}^1(\mathcal{M}, \tau) \to \mathcal{L}^1(\mathcal{M}, \tau)$ such that $\tau \circ \alpha = \tau$ and α does not increase the norm in \mathcal{M} , we establish a non-commutative counterpart of the classical Wiener–Wintner ergodic theorem.

1. Introduction and preliminaries

The celebrated Wiener–Wintner theorem [12] is by far one of the most deep and fruitful results of the classical ergodic theory. It may be stated as follows.

THEOREM 1.1. Let (Ω, μ) be a probability space, and let $T : \Omega \to \Omega$ be an ergodic measure preserving transformation. Then for any function $f \in L^1(\Omega, \mu)$ there exists a set Ω_f of full measure such that, given $\omega \in \Omega_f$, the averages

$$a_n(f,\lambda)(\omega) = \frac{1}{n} \sum_{k=0}^{n-1} \lambda^k f(T^k \omega)$$

converge for all $\lambda \in \mathbb{C}$ with $|\lambda| = 1$.

The aim of this article is to establish a non-commutative extension of Theorem 1.1. We follow the path of "simple inequality" as it is outlined in [1]. This means that our argument relies on a non-commutative Van der Corput's inequality. Note that such an inequality was established in [10].

Let H be a Hilbert space, B(H) the algebra of all bounded linear operators in H, $\|\cdot\|_{\infty}$ the uniform norm in B(H), \mathbb{I} the unit of B(H). Let $\mathcal{M} \subset B(H)$ be a semifinite von Neumann algebra with a faithful normal semifinite trace τ . We denote by $P(\mathcal{M})$ the complete lattice of all projections in \mathcal{M} and set $e^{\perp} = \mathbb{I} - e$ whenever $e \in P(\mathcal{M})$.

©2015 University of Illinois

Received February 3, 2014; received in final form May 21, 2015.

²⁰¹⁰ Mathematics Subject Classification. Primary 47A35. Secondary 46L51.

A densely-defined closed operator x in H is said to be *affiliated* with the algebra \mathcal{M} if $x'x \subset xx'$ for every $x' \in B(H)$ such that x'x = xx' for all $x \in \mathcal{M}$. An operator x affiliated with \mathcal{M} is called τ -measurable if for each $\varepsilon > 0$ there exists such $e \in P(\mathcal{M})$ with $\tau(e^{\perp}) \leq \varepsilon$ that the subspace eH belongs to the domain of x. (In this case $xe \in \mathcal{M}$.) Let $\mathcal{L} = \mathcal{L}(\mathcal{M}, \tau)$ be the set of all τ -measurable operators affiliated with the algebra \mathcal{M} . The topology t_{τ} defined in \mathcal{L} by the family

$$V(\varepsilon,\delta) = \left\{ x \in \mathcal{L} : \|xe\|_{\infty} \le \delta \text{ for some } e \in P(\mathcal{M}) \text{ with } \tau(e^{\perp}) \le \varepsilon \right\};$$

 $\varepsilon > 0, \delta > 0$

of (closed) neighborhoods of zero is called a *measure topology*.

THEOREM 1.2 ([11]; see also [9]). (\mathcal{L}, t_{τ}) is a complete metrizable topological *-algebra.

For a positive self-adjoint operator $x = \int_0^\infty \lambda \, de_\lambda$ affiliated with \mathcal{M} , one can define

$$\tau(x) = \sup_{n} \tau\left(\int_{0}^{n} \lambda \, de_{\lambda}\right) = \int_{0}^{\infty} \lambda \, d\tau(e_{\lambda})$$

If $1 \leq p < \infty$, then the non-commutative L^p -space associated with (\mathcal{M}, τ) is defined as

$$\mathcal{L}^{p} = \mathcal{L}^{p}(\mathcal{M}, \tau) = \left\{ x \in \mathcal{L} : \|x\|_{p} = \left(\tau\left(|x|^{p}\right)\right)^{1/p} < \infty \right\}$$

where $|x| = (x^*x)^{1/2}$, the absolute value of x. Naturally, $\mathcal{L}^{\infty} = \mathcal{M}$.

Let $\alpha : \mathcal{L}^1 \to \mathcal{L}^1$ be a positive linear map such that $\alpha(x) \leq \mathbb{I}$ and $\tau(\alpha(x)) \leq \tau(x)$ for every $x \in \mathcal{L}^1 \cap \mathcal{M}$ with $0 \leq x \leq \mathbb{I}$ (see [13]). Note that, as it is shown in [3, Proposition 1.1], such an α can be uniquely extended to a positive linear contraction on \mathcal{M} . Therefore, α satisfies the hypotheses of [5, Lemma 1.1] and as such can be uniquely extended to a positive linear contraction on \mathcal{L}^p , $1 \leq p < \infty$.

Let $\mathbb{C}_1 = \{z \in \mathbb{C} : |z| = 1\}$. If $1 \le p \le \infty, x \in \mathcal{L}^p, \lambda \in \mathbb{C}_1$, we denote

(1)
$$a_n(x) = \frac{1}{n} \sum_{k=0}^{n-1} \alpha^k(x).$$

(2)
$$a_n(x,\lambda) = \frac{1}{n} \sum_{k=0}^{n-1} \lambda^k \alpha^k(x).$$

There are several generally distinct types of "pointwise" (or "individual") convergence in \mathcal{L} each of which, in the commutative case with finite measure, reduces to the almost everywhere convergence. We deal with the so-called *almost uniform* (a.u.) and *bilateral almost uniform* (b.a.u.) convergences for which $x_n \to x$ a.u. (b.a.u.) means that for every $\varepsilon > 0$ there exists such $e \in P(\mathcal{M})$ that $\tau(e^{\perp}) \leq \varepsilon$ and $||(x - x_n)e||_{\infty} \to 0$ ($||e(x - x_n)e||_{\infty} \to 0$, respectively). Clearly, a.u. convergence implies b.a.u. convergence.

In [13] the following non-commutative ergodic theorem was established.

THEOREM 1.3. For every $x \in \mathcal{L}^1$, the ergodic averages (1) converge b.a.u. to some $\hat{x} \in \mathcal{L}^1$.

REMARK 1.1. B.a.u. convergence of the averages (2) for $x \in \mathcal{L}^1$ (\mathcal{L}^p , $1) and a fixed <math>\lambda \in \mathbb{C}_1$ was proved in [4] ([3], respectively).

2. Non-commutative Wiener–Wintner property

Now we turn our attention to a study of the "simultaneous" on \mathbb{C}_1 individual convergence of the averages (2). We begin with the following definition [7].

DEFINITION 2.1. Let $(X, \|\cdot\|)$ be a normed space. A sequence $a_n : X \to \mathcal{L}$ of additive maps is called *bilaterally uniformly equicontinuous in measure* (b.u.e.m.) at $0 \in X$ if for every $\varepsilon > 0$, $\delta > 0$ there exists $\gamma > 0$ such that for every $x \in X$ with $||x|| < \gamma$ there is $e_x \in P(\mathcal{M})$ for which

$$\tau(e_x^{\perp}) \leq \varepsilon$$
 and $\sup_n \left\| e_x a_n(x) e_x \right\|_{\infty} \leq \delta.$

A proof of the next fact can be found in [7].

PROPOSITION 2.1. For any $1 \le p < \infty$, the sequence $\{a_n\}$ given by (1) is b.u.e.m. at $0 \in \mathcal{L}^p$.

LEMMA 2.1. If $1 \le p < \infty$, then, given $\varepsilon > 0$, $\delta > 0$, there exists $\gamma > 0$ such that for every $x \in \mathcal{L}^p$ with $||x||_p \le \gamma$ there is $e \in P(\mathcal{M})$ satisfying

$$\tau(e^{\perp}) \leq \varepsilon$$
 and $\sup_{n} \left\| ea_n(x,\lambda)e \right\|_{\infty} \leq \delta$ for all $\lambda \in \mathbb{C}_1$.

Proof. Fix $\varepsilon > 0$, $\delta > 0$. By Proposition 2.1, there exists $\gamma > 0$ such that for each $||x||_p < \gamma$ it is possible to find $e \in P(\mathcal{M})$ such that

$$\tau(e^{\perp}) \leq \frac{\varepsilon}{4}$$
 and $\sup_{n} \left\| ea_{n}(x)e \right\|_{\infty} \leq \frac{\delta}{24}.$

Fix $x \in \mathcal{L}^p$ with $||x||_p < \gamma$. We have $x = (x_1 - x_2) + i(x_3 - x_4)$, where $x_j \in \mathcal{L}^p_+$ and $||x_j||_p \le ||x||_p$ for each j = 1, 2, 3, 4.

If $1 \leq j \leq 4$, then $||x_j||_p < \gamma$, so there is $e_j \in P(\mathcal{M})$ satisfying

$$\tau(e_j^{\perp}) \leq \frac{\varepsilon}{4}$$
 and $\sup_n \left\| e_j a_n(x_j) e_j \right\|_{\infty} \leq \frac{\delta}{24}$.

Let $e = \bigwedge_{j=1}^{4} e_j$. Then we have

$$\tau(e^{\perp}) \leq \varepsilon$$
 and $\sup_{n} \left\| ea_n(x_j)e \right\|_{\infty} \leq \frac{\delta}{24}, \quad j = 1, 2, 3, 4.$

Now, fix $\lambda \in \mathbb{C}_1$. For $1 \leq j \leq 4$ denote

$$a_n^{(R)}(x_j,\lambda) = \frac{1}{n} \sum_{k=0}^{n-1} \operatorname{Re}(\lambda^k) \alpha^k(x_j) + a_n(x_j) = \frac{1}{n} \sum_{k=0}^{n-1} (\operatorname{Re}(\lambda^k) + 1) \alpha^k(x_j),$$
$$a_n^{(I)}(x_j,\lambda) = \frac{1}{n} \sum_{k=0}^{n-1} \operatorname{Im}(\lambda^k) \alpha^k(x_j) + a_n(x_j) = \frac{1}{n} \sum_{k=0}^{n-1} (\operatorname{Im}(\lambda^k) + 1) \alpha^k(x_j).$$

Then $0 \leq \operatorname{Re}(\lambda^k) + 1 \leq 2$ and $\alpha^k(x_j) \geq 0$ for every k entail

$$0 \le ea_n^{(R)}(x_j,\lambda) e \le 2ea_n(x_j) e \quad \text{for all } n$$

Therefore

$$\sup_{n} \left\| ea_{n}^{(R)}(x_{j},\lambda) e \right\|_{\infty} \leq \frac{\delta}{12}$$

and, similarly,

$$\sup_{n} \left\| ea_{n}^{(I)}(x_{j},\lambda) e \right\|_{\infty} \leq \frac{\delta}{12}.$$

This implies that, given $1 \le j \le 4$, we have

$$\sup_{n} \left\| ea_{n}(x_{j},\lambda)e \right\|_{\infty}$$

=
$$\sup_{n} \left\| e\left(a_{n}^{(R)}(x_{j},\lambda) + ia_{n}^{(I)}(x_{j},\lambda) - a_{n}(x_{j}) - ia_{n}(x_{j})\right)e \right\|_{\infty} \leq \frac{\delta}{4}$$

and we conclude that

$$\sup_{n} \left\| ea_{n}(x,\lambda)e \right\|_{\infty}$$

$$= \sup_{n} \left\| e\left(a_{n}(x_{1},\lambda) - a_{n}(x_{2},\lambda) + ia_{n}(x_{3},\lambda) - ia_{n}(x_{4},\lambda)\right)e \right\|_{\infty} \leq \delta$$
erv $\lambda \in \mathbb{C}_{1}$.

for every $\lambda \in \mathbb{C}_1$.

DEFINITION 2.2. Let $1 \leq p < \infty$. We say that $x \in \mathcal{L}^p$ satisfies Wiener-Wintner (bilaterally Wiener-Wintner) property and we write $x \in WW$ ($x \in bWW$, respectively) if, given $\varepsilon > 0$, there exists a projection $e \in P(\mathcal{M})$ with $\tau(e^{\perp}) \leq \varepsilon$ such that the sequence

 $\{a_n(x,\lambda)e\} \quad (\{ea_n(x,\lambda)e\}, \text{ respectively}) \text{ converges in } \mathcal{M} \text{ for all } \lambda \in \mathbb{C}_1.$

Note that $WW \subset bWW$, while in the commutative case these sets coinside.

Let (Ω, μ) be a probability space, and let $T : \Omega \to \Omega$ be a measure preserving transformation. Then $f \in L^1(\Omega, \mu) \cap WW$ would imply that for every $m \in \mathbb{N}$ there exists Ω_m with $\mu(\Omega \setminus \Omega_m) \leq \frac{1}{m}$ such that the averages $a_n(f, \lambda)(\omega) = \frac{1}{n} \sum_{k=0}^{n-1} \lambda^k f(T^k \omega)$ converge for all $\omega \in \Omega_m$ and $\lambda \in \mathbb{C}_1$. Then, with $\Omega_f = \bigcup_{m=1}^{\infty} \Omega_m$, we have $\mu(\Omega_f) = 1$, while the averages $a_n(f, \lambda)(\omega)$ converge for all $\omega \in \Omega_f$ and $\lambda \in \mathbb{C}_1$.

Therefore Definition 2.2 presents a proper generalization of the classical Wiener–Wintner property; see [1, p. 28]. In an attempt to clarify what happens in the non-commutative situation without imposing any additional conditions on τ and α , we suggest the following.

PROPOSITION 2.2. Let $1 \leq p < \infty$ and $x \in \mathcal{L}^p \cap WW$ $(x \in \mathcal{L}^p \cap bWW)$. Then

(1) for every $\lambda \in \mathbb{C}_1$ there is such $x_{\lambda} \in \mathcal{L}^p$ that

$$a_n(x,\lambda) \to x_\lambda$$
 a.u. $(a_n(x,\lambda) \to x_\lambda \text{ b.a.u., respectively}),$

(2) if $e \in P(\mathcal{M})$ is such that $\{a_n(x,\lambda)e\}$ ($\{ea_n(x,\lambda)e\}$) converges in \mathcal{M} for all $\lambda \in \mathbb{C}_1$, then, given $\lambda \in \mathbb{C}_1$ and $\nu > 0$, there is a projection $e_\lambda \in P(\mathcal{M})$ such that $e_\lambda \leq p$, $\tau(e - e_\lambda) \leq \nu$, and

$$\left\| \left(a_n(x,\lambda) - x_\lambda \right) e_\lambda \right\|_{\infty} \to 0 \quad \left(\left\| e_\lambda \left(a_n(x,\lambda) - x_\lambda \right) e_\lambda \right\|_{\infty} \to 0, \text{ respectively} \right)$$

Proof. We will provide a proof for the b.a.u. convergence. Same argument is applicable in the case of a.u. convergence.

(1) Let $x \in \mathcal{L}^p \cap bWW$ and $\lambda \in \mathbb{C}_1$. Then for every $\varepsilon > 0$ there exists $e \in P(\mathcal{M})$ with $\tau(e^{\perp}) \leq \varepsilon$ for which

$$\left\|e\left(a_m(x,\lambda)-a_n(x,\lambda)\right)e\right\|_{\infty}\to 0 \quad \text{as } m,n\to\infty.$$

Then, as it is noticed in [2, Proposition 1.3], $a_n(x, \lambda) \to x_\lambda$ b.a.u. for some $x_\lambda \in \mathcal{L}$, which clearly implies that $a_n(x, \lambda) \to x_\lambda$ bilaterally in measure, meaning that, given $\varepsilon > 0$, $\delta > 0$, there exists $N \in \mathbb{N}$ such that for every $n \ge \mathbb{N}$ there is $e_n \in P(\mathcal{M})$ with $\tau(e_n^{\perp}) \le \varepsilon$ satisfying $\|e_n(a_n(x,\lambda) - x_\lambda)e_n\|_{\infty} \le \delta$. Since the measure topology coincides with the bilateral measure topology on \mathcal{L} (see [4, Theorem 2.2]), $a_n(x,\lambda) \to x_\lambda$ in measure. Then, as $\|a_n(x,\lambda)\|_p \le \|x\|_p$ for all n, [4, Theorem 1.2] implies that $x_\lambda \in \mathcal{L}^p$.

(2) Let $e \in P(\mathcal{M})$ be such that the sequence $\{ea_n(x,\lambda)e\}$ converges in \mathcal{M} for all $\lambda \in \mathbb{C}_1$. By part (1), given $\lambda \in \mathbb{C}_1$ and $\nu > 0$, there is $f_\lambda \in P(\mathcal{M})$ with $\tau(f_\lambda^{\perp}) \leq \nu$ such that $\|f_\lambda(a_n(x,\lambda) - x_\lambda)f_\lambda\|_{\infty} \to 0$ as $n \to \infty$. Then $e_\lambda = e \wedge f_\lambda$ satisfies the required conditions.

REMARK 2.1. It is desirable to have the following: if $x \in WW$ ($x \in bWW$), then, given $\varepsilon > 0$, there exists such $e \in P(\mathcal{M})$ with $\tau(e^{\perp}) \leq \varepsilon$ that $||(a_n(x,\lambda) - x_{\lambda})e||_{\infty} \to 0$ ($||e(a_n(x,\lambda) - x_{\lambda})e||_{\infty} \to 0$, respectively) for all $\lambda \in \mathbb{C}_1$; see Remark 5.1 below.

THEOREM 2.1. For each $1 \leq p < \infty$ the set $X = \mathcal{L}^p \cap bWW$ is closed in \mathcal{L}^p .

Proof. Take x in the $\|\cdot\|_p$ -closure of X and fix $\varepsilon > 0$. By Lemma 2.1, one can find sequences $\{x_m\} \subset X$ and $\{f_m\} \subset P(\mathcal{M})$ in such a way that

$$\tau(f_m^{\perp}) \le \frac{\varepsilon}{3 \cdot 2^m}$$
 and $\sup_n \left\| f_m a_n(x - x_m, \lambda) f_m \right\|_{\infty} \le \frac{1}{m}$

for all $m \in \mathbb{N}$ and $\lambda \in \mathbb{C}_1$. If we let $f = \bigwedge_{m=1}^{\infty} f_m$, then

$$\tau(f^{\perp}) \leq \frac{\varepsilon}{3} \quad \text{and} \quad \sup_{n} \left\| fa_n(x - x_m, \lambda)f \right\|_{\infty} \leq \frac{1}{m},$$

 $m \in \mathbb{N}, \lambda \in \mathbb{C}_1$. Also, since $\{x_m\} \subset bWW$, one can construct $g \in P(\mathcal{M})$ such that

 $\tau(g^{\perp}) \leq \frac{\varepsilon}{3}$ and $\{ga_n(x_m,\lambda)g\}$ converges in \mathcal{M} for all $m \in \mathbb{N}, \lambda \in \mathbb{C}_1$.

Next, there exists $h \in P(\mathcal{M})$ with $\tau(h^{\perp}) \leq \frac{\varepsilon}{3}$ for which $\{\alpha^k(x)h\}_{k=0}^{\infty} \subset \mathcal{M}$ so that $\{ha_n(x,\lambda)h\} \subset \mathcal{M}$ for all $\lambda \in \mathbb{C}_1$. Now, if $e = f \wedge g \wedge h$, then we have $\tau(e^{\perp}) \leq \varepsilon$,

$$\sup_{n} \left\| ea_{n}(x - x_{m}, \lambda)e \right\|_{\infty} \leq \frac{1}{m},$$

$$\left\{ ea_{n}(x_{m}, \lambda)e \right\} \quad \text{converges in } \mathcal{M}, \quad \text{and} \quad \left\{ ea_{n}(x, \lambda)e \right\} \subset \mathcal{M}$$

for all $m \in \mathbb{N}$ and $\lambda \in \mathbb{C}_1$.

It remains to show that, for a fixed $\lambda \in \mathbb{C}_1$, the sequence $\{ea_n(x,\lambda)e\}$ converges in \mathcal{M} . So, fix $\delta > 0$ and pick m_0 such that $\frac{1}{m_0} \leq \frac{\delta}{3}$. Since the sequence $\{ea_n(x_{m_0},\lambda)e\}$ converges in \mathcal{M} , there exists N such that

$$\left\|e\left(a_{n_1}(x_{m_0},\lambda)-a_{n_2}(x_{m_0},\lambda)\right)e\right\|_{\infty}\leq\frac{\delta}{3}$$

whenever $n_1, n_2 \ge N$. Therefore, given $n_1, n_2 \ge N$, we can write

$$\begin{aligned} & \| e(a_{n_1}(x,\lambda) - a_{n_2}(x,\lambda)) e \|_{\infty} \\ & \leq \| ea_{n_1}(x - x_{m_0},\lambda) e \|_{\infty} + \| ea_{n_2}(x - x_{m_0},\lambda) e \|_{\infty} \\ & + \| e(a_{n_1}(x_{m_0},\lambda) - a_{n_2}(x_{m_0},\lambda)) e \|_{\infty} \\ & \leq \delta. \end{aligned}$$

This implies that the sequence $\{ea_n(x,\lambda)e\}$ converges in \mathcal{M} for all $\lambda \in \mathbb{C}_1$, hence $x \in X$ and X is closed in \mathcal{L}^p . \Box

Let \mathcal{K} be the $\|\cdot\|_2$ -closure of the linear span of the set

(3)
$$E = \left\{ x \in \mathcal{L}^2 : \alpha(x) = \mu x \text{ for some } \mu \in \mathbb{C}_1 \right\}.$$

Proposition 2.3. $\mathcal{K} \subset bWW$.

Proof. By Theorem 2.1, it is sufficient to show that $\sum_{j=1}^{m} a_j x_j \in bWW$ whenever $a_j \in \mathbb{C}$ and $x_j \in E$, $1 \leq j \leq m$. For this, one will verify that $E \subset WW$.

If $x \in E$, then $\alpha(x) = \mu x$, $\mu \in \mathbb{C}_1$. Fix $\varepsilon > 0$ and find $e \in P(\mathcal{M})$ with $\tau(e^{\perp}) \leq \varepsilon$ such that $xe \in \mathcal{M}$. Then, given $\lambda \in \mathbb{C}_1$, we have

$$a_n(x,\lambda) = xe\frac{1}{n}\sum_{k=0}^{n-1} (\lambda\mu)^k.$$

Therefore, since the averages $\frac{1}{n} \sum_{k=0}^{n-1} (\lambda \mu)^k$ converge, we conclude that the sequence $\{a_n(x,\lambda)e\}$ converges in \mathcal{M} , whence $x \in WW$.

3. Spectral characterization of \mathcal{K}^{\perp}

The space \mathcal{L}^2 equipped with the inner product $(x, y)_{\tau} = \tau(x^*y)$ is a Hilbert space such that $||x||_2 = ||x||_{\tau} = (x, x)_{\tau}^{1/2}, x \in \mathcal{L}^2$.

From now on we shall assume that τ and α satisfy the following additional conditions: τ is a state, α is a homomorphism, and $\tau \circ \alpha = \tau$. Notice that then $\|\alpha(x)\|_2 = \|x\|_2$ and $|\tau(x)| \leq \|x\|_2$ for every $x \in \mathcal{L}^2$.

PROPOSITION 3.1. If $x \in \mathcal{L}^2$, then the sequence $\{\gamma_x(l)\}_{-\infty}^{\infty}$ given by

$$\gamma_x(l) = \begin{cases} \tau(x^* \alpha^l(x)), & \text{if } l \ge 0, \\ \overline{\tau(x^* \alpha^{-l}(x))}, & \text{if } l < 0 \end{cases}$$

is positive definite.

Proof. If $\mu_0, \ldots, \mu_m \in \mathbb{C}$, then, taking into account that positivity of α implies that $\alpha(y)^* = \alpha(y^*), y \in \mathcal{L}^2$, we have

$$0 \leq \left\| \sum_{k=0}^{m} \mu_k \alpha^k(x) \right\|_2^2 = \left(\sum_{j=0}^{m} \mu_j \alpha^j(x), \sum_{i=0}^{m} \mu_i \alpha^i(x) \right)_{\tau}$$
$$= \sum_{i,j=0}^{m} \mu_i \bar{\mu}_j \tau \left(\alpha^j(x^*) \alpha^i(x) \right).$$

If $i \ge j$, we can write

$$\tau\left(\alpha^{j}(x^{*})\alpha^{i}(x)\right) = \tau\left(\alpha^{j}\left(x^{*}\alpha^{i-j}(x)\right)\right) = \tau\left(x^{*}\alpha^{i-j}(x)\right) = \gamma_{x}(i-j),$$

and if i < j, we have

$$\tau(\alpha^j(x^*)\alpha^i(x)) = \overline{\tau(\alpha^i(x^*)\alpha^j(x))} = \overline{\tau(x^*\alpha^{j-i}(x))} = \gamma_x(i-j).$$

Therefore

$$\sum_{i,j=0}^m \gamma_x(i-j)\mu_i\bar{\mu}_j \ge 0$$

for any $\mu_0, \ldots, \mu_m \in \mathbb{C}$, hence $\{\gamma_x(l)\}$ is positive definite.

Consequently, given $x \in \mathcal{L}^2$, by Herglotz–Bochner theorem, there exists a positive finite Borel measure σ_x on \mathbb{C}_1 such that

(4)
$$\tau(x^*\alpha^l(x)) = \gamma_x(l) = \widehat{\sigma}_x(l) = \int_{\mathbb{C}_1} e^{2\pi i lt} d\sigma_x(t), \quad l = 1, 2, \dots$$

Lemma 3.1. $\alpha(\mathcal{K}^{\perp}) \subset \mathcal{K}^{\perp}$.

 \Box

Proof. Since $\alpha : \mathcal{L}^2 \to \mathcal{L}^2$ is an isometry, we have $\|\alpha\| = 1$. Therefore, $\|\alpha^*\| = 1$ as well, so that $\|\alpha^*(x)\|_2 \le \|x\|_2, x \in \mathcal{L}^2$.

Let $x \in E$, that is, $x \in \mathcal{L}^2$ and $\alpha(x) = \mu x$ for some $\mu \in \mathbb{C}_1$. Then we have

$$\left\|\alpha^{*}(x) - \bar{\mu}x\right\|_{2}^{2} = \left\|\alpha^{*}(x)\right\|_{2}^{2} - \bar{\mu}\left(\alpha^{*}(x), x\right)_{\tau} - \mu\left(x, \alpha^{*}(x)\right)_{\tau} + \|x\|_{2}^{2} \le 0,$$

and it follows that $\alpha^*(x) = \bar{\mu}x$.

Now, if $y \in \mathcal{K}^{\perp}$, then $(\alpha(y), x)_{\tau} = (y, \alpha^*(x))_{\tau} = \overline{\mu}(y, x)_{\tau} = 0$, which implies that $\alpha(y) \perp E$, hence $\alpha(y) \in \mathcal{K}^{\perp}$.

PROPOSITION 3.2. If $x \in \mathcal{K}^{\perp}$, then the measure σ_x is continuous.

Proof. We need to show that $\sigma_x(\{t\}) = 0$ for every $t \in \mathbb{C}_1$. It is known [6, p. 42] that

$$\sigma_x(\lbrace t\rbrace) = \lim_{n \to \infty} \frac{1}{n} \sum_{l=1}^n e^{2\pi i l t} \widehat{\sigma}_x(t)$$

which is equal to

$$\lim_{n \to \infty} \frac{1}{n} \sum_{l=1}^{n} e^{2\pi i l t} \tau \left(x^* \alpha^l(x) \right) = \lim_{n \to \infty} \tau \left(x^* \left(\frac{1}{n} \sum_{l=1}^{n} e^{2\pi i l t} \alpha^l(x) \right) \right).$$

Therefore, it is sufficient to verify that

(5)
$$\lim_{n \to \infty} \left\| \frac{1}{n} \sum_{l=1}^{n} e^{2\pi i l t} \alpha^l(x) \right\|_2 = 0.$$

By the Mean Ergodic theorem applied to $\tilde{\alpha}: \mathcal{L}^2 \to \mathcal{L}^2$ given by $\tilde{\alpha}(x) = e^{2\pi i t} \alpha(x)$, we conclude that

$$\frac{1}{n}\sum_{l=1}^{n}e^{2\pi i lt}\alpha^{l}(x) \to \bar{x} \quad \text{in } \mathcal{L}^{2}.$$

Since $x \in \mathcal{K}^{\perp}$, by Lemma 3.1, we have $\alpha^{l}(x) \in \mathcal{K}^{\perp}$ for each l, which implies that $\bar{x} \in \mathcal{K}^{\perp}$. Besides,

$$\alpha(\bar{x}) = \|\cdot\|_2 - \lim_{n \to \infty} \frac{1}{n} \sum_{l=1}^n e^{2\pi i lt} \alpha^{l+1}(x) = e^{-2\pi i t} \bar{x},$$

so that $\bar{x} \in \mathcal{K}$. Therefore $\bar{x} = 0$, and (5) follows.

4. Non-commutative Van der Corput's inequality

It was shown in [10] that the extremely useful Van der Corput's "Fundamental Inequality" (see [1]) can be fully extended to any *-algebra:

 \Box

THEOREM 4.1 ([10]). If $n \ge 1$, $0 \le m \le n-1$ are integers and a_0, \ldots, a_{n-1+m} are elements of a *-algebra such that $a_n = \cdots = a_{n-1+m} = 0$, then

$$\left(\sum_{k=0}^{n-1} a_k^*\right) \left(\sum_{k=0}^{n-1} a_k\right) \le \frac{n-1+m}{m+1} \sum_{k=0}^{n-1} a_k^* a_k + \frac{2(n-1+m)}{m+1} \sum_{l=1}^m \frac{m-l+1}{m+1} \operatorname{Re} \sum_{k=0}^{n-1} a_k^* a_{k+l}.$$

COROLLARY 4.1. If in Theorem 4.1, a_0, \ldots, a_{n-1+m} are elements of a C^* -algebra with the norm $\|\cdot\|$, then

$$\left\|\sum_{k=0}^{n-1} a_k\right\|^2 \le \frac{n-1+m}{m+1} \left\|\sum_{k=0}^{n-1} a_k^* a_k\right\| + \frac{2(n-1+m)}{m+1} \sum_{l=1}^m \frac{m-l+1}{m+1} \left\|\sum_{k=0}^{n-1} a_k^* a_{k+l}\right\|,$$

which implies that

$$\begin{split} \left\| \frac{1}{n} \sum_{k=0}^{n-1} a_k \right\|^2 &\leq \frac{n-1+m}{(m+1)n} \left\| \frac{1}{n} \sum_{k=0}^{n-1} a_k^* a_k \right\| \\ &+ \frac{2(n-1+m)}{(m+1)n} \sum_{l=1}^m \frac{m-l+1}{m+1} \left\| \frac{1}{n} \sum_{k=0}^{n-1} a_k^* a_{k+l} \right\|, \end{split}$$

and further

(6)
$$\left\|\frac{1}{n}\sum_{k=0}^{n-1}a_k\right\|^2 < \frac{2}{m+1}\left\|\frac{1}{n}\sum_{k=0}^{n-1}a_k^*a_k\right\| + \frac{4}{m+1}\sum_{l=1}^m\left\|\frac{1}{n}\sum_{k=0}^{n-1}a_k^*a_{k+l}\right\|$$

5. Proof of the main result

We will assume now that α is ergodic on \mathcal{L}^2 , that is, $\alpha(x) = x$, $x \in \mathcal{L}^2$, implies that $x = c \cdot \mathbb{I}$, $c \in \mathbb{C}$.

PROPOSITION 5.1. If $x \in \mathcal{L}^2$, then $a_n(x) \to \tau(x) \cdot \mathbb{I}$ a.u.

Proof. By the Mean Ergodic theorem, $a_n(x) \to \bar{x}$ in \mathcal{L}^2 . Therefore, $\alpha(a_n(x)) \to \alpha(\bar{x})$ in \mathcal{L}^2 , so $\alpha(\bar{x}) = \bar{x}$, and the ergodicity of α implies that $\bar{x} = c(x) \cdot \mathbb{I}$. Then, since τ is also continuous in \mathcal{L}^2 , we have $\tau(a_n(x)) \to \tau(\bar{x}) = c(x)$, hence $c(x) = \tau(x)$ because $\tau(a_n(x)) = \tau(x)$ for each n. It is known ([5], [7]) that $a_n(x) \to \hat{x} \in \mathcal{L}^2$ a.u., which implies that $a_n(x) \to \hat{x}$ in measure. Since $\|\cdot\|_2$ -convergence entails convergence in measure, we conclude that $\hat{x} = \bar{x} = \tau(x) \cdot \mathbb{I}$.

LEMMA 5.1. If
$$a, b \in \mathcal{L}$$
 and $e \in P(\mathcal{M})$ are such that $ae, be \in \mathcal{M}$, then

$$(ae)^*be = ea^*be.$$

Proof. We have

$$((ae)^*be)^* = (be)^*ae \subset (be)^*(ea^*)^* \subset (ea^*be)^*,$$

which, since $((ae)^*be)^* \in B(H)$, implies that $((ae)^*be)^* = (ea^*be)^*$, hence the required equality.

Now we can prove our main result, a non-commutative Wiener–Wintner theorem.

THEOREM 5.1. Let \mathcal{M} be a von Neumann algebra, τ a faithful normal tracial state on \mathcal{M} . Let $\alpha : \mathcal{L}^1 \to \mathcal{L}^1$ be a positive ergodic homomorphism such that $\tau \circ \alpha = \tau$ and $\|\alpha(x)\|_{\infty} \leq \|x\|_{\infty}, x \in \mathcal{M}$. Then $\mathcal{L}^1 = bWW$, that is, for every $x \in \mathcal{L}^1$ and $\varepsilon > 0$ there exists such a projection $e \in P(\mathcal{M})$ that

 $\tau(e^{\perp}) \leq \varepsilon$ and $\{ea_n(x,\lambda)e\}$ converges in \mathcal{M} for all $\lambda \in \mathbb{C}_1$.

Proof. Since \mathcal{L}^2 is dense in \mathcal{L}^1 , $\mathcal{L}^2 = \mathcal{K} \oplus \mathcal{K}^{\perp}$, and $\mathcal{K} \subset bWW$ (Proposition 2.3), by Theorem 2.1, it remains to show that $\mathcal{K}^{\perp} \subset bWW$. (In fact, we will show that $\mathcal{K}^{\perp} \subset WW$.)

So, let $x \in \mathcal{K}^{\perp}$ and fix $\varepsilon > 0$. Since $\{x^* \alpha^l(x)\}_{l=0}^{\infty} \subset \mathcal{L}^2$, due to Proposition 5.1, one can construct a projection $e \in P(\mathcal{M})$ in such a way that

$$\tau(e^{\perp}) \leq \varepsilon, \qquad \{\alpha^k(x)e\} \subset \mathcal{M} \quad \text{for all } k,\\ ea_n(x^*x)e \to \tau(x^*x)e = \|x\|_2 e \quad \text{in } \mathcal{M}, \quad \text{and}\\ ea_n(x^*\alpha^l(x))e \to \tau(x^*\alpha^l(x))e = \widehat{\sigma}_x(l)e \quad \text{in } \mathcal{M} \text{ for every } l.$$

Now, if $a_k = \lambda^k \alpha^k(x)e$, k = 0, 1, 2, ..., then, employing Lemma 5.1, we obtain

$$a_{k}^{*}a_{k+l} = \lambda^{l}e\alpha^{k}(x^{*}\alpha^{l}(x))e, \quad k, l = 0, 1, 2, \dots$$

At this moment we apply inequality (6) to the sequence $\{a_k\} \subset \mathcal{M}$ yielding, in view of (1) and (2),

$$\sup_{\lambda \in \mathbb{C}_1} \left\| a_n(x,\lambda) e \right\|_{\infty}^2 \le \frac{2}{m+1} \left\| ea_n(x^*x) e \right\|_{\infty} + \frac{4}{m+1} \sum_{l=1}^m \left\| ea_n(x^*\alpha^l(x)) e \right\|_{\infty}.$$

Therefore, for a fixed m, we have

$$\limsup_{n} \sup_{\lambda \in \mathbb{C}_{1}} \sup_{\lambda \in \mathbb{C}_{1}} \left\| a_{n}(x,\lambda) e \right\|_{\infty}^{2} \leq \frac{2}{m+1} \|x\|_{2}^{2} + \frac{4}{m+1} \sum_{l=1}^{m} \left| \widehat{\sigma}_{x}(l) \right|.$$

Since the measure σ_x is continuous by Proposition 3.2, Wiener's criterion of continuity of positive finite Borel measure [6, p. 42] yields

$$\lim_{m \to \infty} \frac{1}{m+1} \sum_{l=1}^{m} \left| \widehat{\sigma}_x(l) \right|^2 = 0,$$

which entails

$$\lim_{m \to \infty} \frac{1}{m+1} \sum_{l=1}^{m} \left| \widehat{\sigma}_x(l) \right| = 0.$$

Thus, we conclude that

(7)

$$\lim_{n\to\infty}\sup_{\lambda\in\mathbb{C}_1}\left\|a_n(x,\lambda)e\right\|_{\infty}=0,$$

whence $x \in WW$.

Note that (7) can be referred to as non-commutative Bourgain's uniform Wiener–Wintner ergodic theorem.

REMARK 5.1. As we have noticed (Proposition 2.2), for a fixed $\lambda \in \mathbb{C}_1$ and every $x \in \mathcal{L}^1$, the averages $a_n(x, \lambda)$ converge b.a.u. to some $x_\lambda \in \mathcal{L}^1$. It can be verified [8] that x_λ is a scalar multiple of \mathbb{I} . If we assume additionally that α is weakly mixing in \mathcal{L}^2 , that is, 1 is its only eigenvalue there, then it is easy to see that the b.a.u. limit of $\{a_n(x,\lambda)\}$ with $x \in \mathcal{L}^2$ is zero unless $\lambda = 1$. Since \mathcal{L}^2 is dense in \mathcal{L}^1 , one can employ an argument similar to that of Theorem 2.1 to show that $a_n(x,\lambda) \to 0$ b.a.u. for every $x \in \mathcal{L}^1$ if $\lambda \neq 1$. Therefore if α is weakly mixing, we can replace, in Theorem 5.1,

$$\{ea_n(x,\lambda)e\}$$
 converges in \mathcal{M} for all $\lambda \in \mathbb{C}_1$

by

$$\begin{aligned} \left\| ea_n(x,\lambda)e \right\|_{\infty} &\to 0 \quad \text{if } \lambda \neq 0 \quad \text{and} \\ \left\| e\left(a_n(x) - x_1\right)e \right\|_{\infty} &\to 0 \quad \text{for some } x_1 \in \mathcal{L}^1; \end{aligned}$$

see Proposition 2.2 and Remark 2.1.

References

- I. Assani, Wiener Wintner ergodic theorems, World Scientific, River Edge, 2003. MR 1995517
- [2] V. Chilin and S. Litvinov, Uniform equicontinuity for sequences of homomorphisms into the ring of measurable operators, Methods Funct. Anal. Topology 12 (2006), no. 2, 124–130. MR 2238034
- [3] V. Chilin and S. Litvinov, Ergodic theorems in fully symmetric spaces of τ-measurable operators, 2015; available at arXiv:1410.1451v2.
- [4] V. Chilin, S. Litvinov and A. Skalski, A few remarks in non-commutative ergodic theory, J. Operator Theory 53 (2005), no. 2, 331–350. MR 2153152
- [5] M. Junge and Q. Xu, Noncommutative maximal ergodic theorems, J. Amer. Math. Soc. 20 (2007), no. 2, 385–439. MR 2276775
- [6] Y. Katznelson, An introduction to harmonic analysis, Dover, New York, 1976. MR 0422992
- S. Litvinov, Uniform equicontinuity of sequences of measurable operators and noncommutative ergodic theorems, Proc. Amer. Math. Soc. 140 (2012), 2401–2409. MR 2898702
- [8] S. Litvinov, Weighted ergodic theorems, Ph.D. thesis, North Dakota State University, 1999. MR 2699678

- [9] E. Nelson, Notes on non-commutative integration, J. Funct. Anal. 15 (1974), 103–116. MR 0355628
- [10] C. P. Niculescu, A. Ströh and L. Zsidó, Noncommutative extensions of classical and multiple recurrence theorems, J. Operator Theory 50 (2005), 3–52. MR 2015017
- I. Segal, A non-commutative extension of abstract integration, Ann. of Math. (2) 57 (1953), 401–457. MR 0054864
- [12] N. Wiener and A. Wintner, Harmonic analysis and ergodic theory, Amer. J. Math. 63 (1941), no. 2, 415–426. MR 0004098
- [13] F. J. Yeadon, Ergodic theorems for semifinite von Neumann algebras-I, J. Lond. Math. Soc. (2) 16 (1977), no. 2, 326–332. MR 0487482

SEMYON LITVINOV, DEPARTMENT OF MATHEMATICS, PENNSYLVANIA STATE UNIVERSITY, HAZLETON, PA 18202, USA

E-mail address: snl2@psu.edu