Open Access
Summer 2009 Nonvanishing derivatives and the MacLane class $\mathcal{A}$
Alastair Fletcher, Jim Langley, Janis Meyer
Illinois J. Math. 53(2): 379-390 (Summer 2009). DOI: 10.1215/ijm/1266934783


Let $k \geq2$ and let $f$ be meromorphic in the unit disc $\Delta$, such that $f(z) f^{(k)}(z) \neq0$ for all $z \in\Delta$ and the poles of $f$ in $\Delta$ have bounded multiplicities. Then $f $ has asymptotic values on a dense subset of $\partial\Delta$.


Download Citation

Alastair Fletcher. Jim Langley. Janis Meyer. "Nonvanishing derivatives and the MacLane class $\mathcal{A}$." Illinois J. Math. 53 (2) 379 - 390, Summer 2009.


Published: Summer 2009
First available in Project Euclid: 23 February 2010

MathSciNet: MR2594634
Digital Object Identifier: 10.1215/ijm/1266934783

Primary: 30D35 , 30D40

Rights: Copyright © 2009 University of Illinois at Urbana-Champaign

Vol.53 • No. 2 • Summer 2009
Back to Top