Open Access
Fall 2008 An optimal lower curvature bound for convex hypersurfaces in Riemannian manifolds
Stephanie Alexander, Vitali Kapovitch, Anton Petrunin
Illinois J. Math. 52(3): 1031-1033 (Fall 2008). DOI: 10.1215/ijm/1254403729

Abstract

It is proved that a convex hypersurface in a Riemannian manifold of sectional curvature $\ge\kappa$ is an Alexandrov's space of curvature $\ge\kappa$. This theorem provides an optimal lower curvature bound for an older theorem of Buyalo.

Citation

Download Citation

Stephanie Alexander. Vitali Kapovitch. Anton Petrunin. "An optimal lower curvature bound for convex hypersurfaces in Riemannian manifolds." Illinois J. Math. 52 (3) 1031 - 1033, Fall 2008. https://doi.org/10.1215/ijm/1254403729

Information

Published: Fall 2008
First available in Project Euclid: 1 October 2009

zbMATH: 1200.53040
MathSciNet: MR2546022
Digital Object Identifier: 10.1215/ijm/1254403729

Subjects:
Primary: 53B25 , 53C20
Secondary: 53C23 , 53C45

Rights: Copyright © 2008 University of Illinois at Urbana-Champaign

Vol.52 • No. 3 • Fall 2008
Back to Top