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AN OPTIMAL LOWER CURVATURE BOUND FOR CONVEX
HYPERSURFACES IN RIEMANNIAN MANIFOLDS

STEPHANIE ALEXANDER, VITALI KAPOVITCH AND ANTON PETRUNIN

Abstract. It is proved that a convex hypersurface in a Rie-
mannian manifold of sectional curvature ≥ κ is an Alexandrov’s

space of curvature ≥ κ. This theorem provides an optimal lower
curvature bound for an older theorem of Buyalo.

The purpose of this paper is to provide a reference for the following theorem.

Theorem 1. Let M be a Riemannian manifold with sectional curva-
ture ≥ κ. Then any convex hypersurface F ⊂ M equipped with the induced
intrinsic metric is an Alexandrov’s space with curvature ≥ κ.

The following is a slightly weaker statement.

Theorem 2 ([Buyalo]). If M is a Riemannian manifold, then any convex
hypersurface F ⊂ M equipped with the induced intrinsic metric is locally an
Alexandrov’s space.

In the proof of Theorem 2 in [Buyalo], the (local) lower curvature bound
depends on (local) upper as well as lower curvature bounds of M . We show
that the approach in [Buyalo] can be modified to give Theorem 1.

Definition 3. A locally Lipschitz function f on an open subset of a Rie-
mannian manifold is called λ-concave (λ ∈ R) if for any unit-speed geodesic
γ, the function

t �→ f ◦ γ(t) − λ

2
t2

is concave.
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Lemma 4. Let f : Ω → R be a λ-concave function on an open subset Ω of
a Riemannian manifold. Then there is a sequence of nested open domains Ωi,
with Ωi ⊂ Ωj for i < j and

⋃
i Ωi = Ω, and a sequence of smooth λi-concave

functions fi : Ωi → R such that:
(i) on any compact subset K ⊂ Ω, fi converges uniformly to f ;
(ii) λi → λ as i → ∞.

This lemma is a slight generalization of [Greene–Wu, Theorem 2] and can
be proved exactly the same way.

Proof of Theorem 1. Without loss of generality one can assume that:
(a) κ ≥ −1,
(b) F bounds a compact convex set C in M ,
(c) there is a (−2)-concave function μ defined in a neighborhood of C and

|μ(x)| < 1/10 for any x ∈ C,
(d) there is unique minimal geodesic between any two points in C.
(If not, rescale and pass to the boundary of the convex piece cut by F from a
small convex ball centered at x ∈ F , taking μ = −10dist2x.)

Consider the function f = distF . By Rauch comparison (as in [Petersen,
11.4.8]), for any unit-speed geodesic γ in the interior of C, (f ◦ γ)′ ′ is bounded
in the barrier sense by the corresponding value in the model case—when M
is Lobachevsky plane and F is a geodesic. In particular,

(f ◦ γ)′ ′ ≤ f ◦ γ.

Therefore, f + εμ is (−ε)-concave in Ωε = f −1((0, ε)) ∩ C. Take Kε =
f −1([ 13ε, 2

3ε]) ∩ C. Applying Lemma 4, we can find a smooth (− ε
2 )-concave

function fε which is arbitrarily close to f + εμ on Kε and which is defined
on a neighborhood of Kε. Take a regular value ϑε ≈ 1

2ε of fε. (In fact, one
can take ϑε = 1

2ε, but it requires a little work.) Since |μ|C | < 1/10, the level
set Fε = f −1

ε (ϑε) will lie entirely in Kε. Therefore, Fε forms a smooth closed
convex hypersurface.

Let us denote by ρ and ρε the induced intrinsic metrics on correspondingly
F and Fε. By the Gauss formula, (Fε, ρε) has curvature ≥ κ. Further, Fε

bounds a compact convex set Cε and Fε → F , Cε → C in Hausdorff sense
as ε → 0. By property (d), the restricted metrics from M to C and to Cε

are intrinsic. Thus, Cε is an Alexandrov space with Fε as boundary, that
converges in Gromov–Hausdorff sense to C. It follows from [Petrunin, Theo-
rem 1.2] (compare [Buyalo, Theorem 1]) that (Fε, ρε) converges in Gromov–
Hausdorff sense to (F,ρ). Therefore, (F,ρ) is an Alexandrov space with cur-
vature ≥ κ. �

Remark 5. We are not aware of any proof of Theorem 1 which is not
based on the Gauss formula. (Although if M is Euclidean space, there is a
beautiful purely synthetic proof in [Milka].) Finding such a proof would be
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interesting on its own, and also could lead to the generalization of Theorem 1
to the case when M is an Alexandrov space.
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